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a b s t r a c t 

Graph-based saliency detection approaches have gained great popularity due to the simplicity and effi- 

ciency of graph algorithms. In these approaches, the saliency values of image elements are ranked by 

the similarity of image elements with foreground or background cues via graph-based ranking. However, 

in previous methods, the similarity between any two image elements on the affinity graph is computed 

by manually set functions which are sensitive to function parameters, and the constructed graph may 

not reveal the essentially relevance between feature vectors extracted from different image elements. 

In addition, during the saliency ranking process, all the initial labels contribute equally to the ranking 

function while the global saliency confidence of each image element is not taken into consideration. In 

order to address these two issues, we propose a bottom-up saliency detection approach by affinity graph 

learning and weighted manifold ranking. An unsupervised learning approach is introduced to learn the 

affinity graph based on image data self-representation. By setting image boundary superpixels as back- 

ground seeds, the global saliency confidence prior implied in the affinity matrix is utilized to weight the 

saliency ranking. In such a manner, the superpixels with higher saliency confidences will be assigned 

higher saliency values in the final saliency map and the background superpixels can be efficiently sup- 

pressed. Comprehensive evaluations on three challenge datasets indicate that our algorithm universally 

surpasses other unsupervised graph based saliency detection methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Human beings can rapidly identify the visually distinctive parts

n a given scene, but how to make computer accomplish this

ask in a quick and unsupervised manner is a challenge problem,

hich is also called “visual saliency detection” in computer vi-

ion field. Visual saliency has been a fundamental research prob-

em in neuroscience, psychology and vision perception for a long

ime. Salient object detection, as an important and useful branch

f visual saliency detection, aims to locate and segment the most

nformative foreground objects from a scene. It has been a boom-

ng research topic in the last one and a half decades due to its
� Fully documented templates are available in the elsarticle package on CTAN . 
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ide range of applications in computer vision, such as object de-

ection and recognition [1–3] , image classification [4] and retrieval

5–7] , object co-segmentation [8,9] and content-based image

diting [10–13] . 

Over the past decades, many saliency detection models have

een proposed to compute the saliency map of a given image

nd detect the salient objects. These models can be mainly cat-

gorized into two classes: top-down and bottom-up. Top-down

odels [14,15] are task-driven and usually exploit high-level hu-

an perceptual knowledge, such as context, semantic and back-

round priors, to guide the saliency detection. However, the gen-

ralization and scalability of top-down models are limited due to

he high diversity of object and task types. Bottom-up methods

16–19] are stimulus-driven and usually exploit low-level image at-

ributes such as color, gradient, edges, and boundaries to construct

aliency maps. Compared to traditional methods with low-level

and-crafted features, deep neural networks have also achieved

https://doi.org/10.1016/j.neucom.2018.05.106
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.106&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:minhwang@163.com
mailto:jjiachen@outlook.com
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2 We use “group” as a general expression here. For specific problems, the group 

means cluster for clustering task, image region for segmentation, class for classifi- 

cation. 
state-of-the-art results in saliency detection [20–25] . The suc-

cess stems from the expressibility and capacity of deep architec-

tures that facilitates learning complex high-level features and mod-

els to account for interacted relationships directly from training

examples. Recent surveys on salient object detection models can

be found in [26–28] . 

In recent years, due to the simplicity and efficiency of graph

algorithms, more and more graph-based saliency detection ap-

proaches have been proposed and achieved great success. Harel

et al. [29] proposed the graph based visual saliency (GBVS), a

graph-based bottom-up saliency model with dissimilarity mea-

surements to extract saliency information. Random walks model

[30] has been exploited in an automatic salient-region-extraction

method to effectively detect the rough location of the most salient

object in an image. Chang et al. [31] introduced a computational

framework by constructing a graphical model to fuse objectness

and regional saliency. Yang et al. [32,33] utilized the four bound-

aries of the input image as background queries, the saliency detec-

tion is converted to a manifold ranking process on a graph. By tak-

ing the image details and region-based estimations into account,

Li et al. [34] proposed a regularized random walks ranking to for-

mulate pixel-wised saliency maps from the superpixel-based back-

ground and foreground saliency estimations. Wang et al. [35] pro-

posed a novel graph model which can effectively capture local and

global saliency cues, the saliency detection is also accomplished by

manifold ranking. 

Most of above mentioned graph based saliency detection mod-

els can be regarded as a ranking or label propagation problem [36] ,

and these algorithms universally outperforms most of the state-of-

the-art saliency detection methods and are more computationally

efficient. However, the affinity graph (i.e., similarity matrix of fea-

ture vectors) used in existing graph based saliency detection meth-

ods are computed by manually set functions which are sensitive to

function parameters, and this graph may cannot reveal the essen-

tially relevance between feature vectors extracted from different

image elements. In addition, during the saliency ranking process,

the global saliency confidence of each image element is not taken

into consideration. 

In this paper, we propose a bottom-up saliency detection ap-

proach via affinity graph learning and weighted manifold rank-

ing. Different to previous graph based saliency detection methods,

the affinity graph is learned in a unsupervised manner in our ap-

proach, but not computed by manually set functions. By using the

learned affinity graph, the saliency map is obtained by a two stage

weighted manifold ranking. Specifically, we first exploit boundary

prior for selecting background ranking seeds to perform an initial

background query. Then the initial saliency map is further used to

generate foreground ranking seeds to perform salient foreground

query to obtain the final saliency map. During the ranking pro-

cess, the global saliency confidence implied in the affinity graph is

used to weight the ranking function, which makes those image re-

gions with higher saliency confidence being allocated with higher

saliency scores in the final results. The contributions of this paper

can be summarized as follows: 

1. We propose an automatic affinity graph learning model for

graph-based saliency detection, and a recursive algorithm is de-

veloped to solve the model. 

2. The global saliency confidence implied in the affinity graph is

used to weight the saliency ranking process, which makes the

background and foreground regions more separable. 

3. Comprehensive evaluations on three challenge datasets are con-

ducted to verify the efficacy of our saliency detection method. 

The remainder of this paper is organized as follows.

Section 2 describes some related works. Section 3 introduces
he proposed method. Experimental results on three datasets are

rovided in Section 4 . Section 5 concludes the paper. 

. Related works 

The core of our work is composed of two parts: affinity graph

earning and saliency detection by manifold ranking. In the follow-

ng sections, we will describe some related works about affinity

raph learning and manifold ranking. 

.1. Affinity graph learning 

Affinity graph is used in many computer vision tasks such as

mage segmentation [37,38] , classification [39,40] and image data

lustering [41] . The key issue in graph based applications is to con-

truct a “good” affinity matrix A ∈ R 

n ×n , in which each element A i j 

a.k.a., edge weight) reflects the similarity between data points x i 
nd x j , Ideally, the affinity should be 1 if they are from the same

roup 

2 , 0 otherwise. In traditional methods, the most intuitive way

o conduct the data affinity matrix is directly computing distances

n the raw data (e.g., k-nearest neighbor [42] or ε-neighborhoods

sing cosine or heat kernel distances). It should be noticed that

he parameter setting in these two kinds of methods will heavily

nfluence the final task performance. Nie et al. [43] developed a

ore sophisticated method to learn the affinity matrix by adap-

ively assigning neighbors for each data point based on the local

onnectivity. However, the affinity matrix constructed on the raw

ata is unable to well reveal the intrinsic structure of data points.

nspired by the data representation theory [44–46] , a huge number

f research which exploits the relationship of data representations

as been proposed. Sparse representation is a typical and widely

sed technique which assumes that a complex data can be repre-

ented by some data bases. Qiao et al. [47] constructed an L 1 graph

ith weighted edges using the coefficients of the sparse coding

nd it is integrated into a locality preserving projection method

or human face recognition. The coefficients of sparse representa-

ion are also used to construct the graph for semi-supervised clas-

ification [48] and multi-label classification [49] . Zhang [50] pro-

osed a novel non-negative low-rank and sparse (NNLRS) graph for

emi-supervised learning. The weights of edges in the graph are

btained by seeking a non-negative low-rank and sparse matrix

hat represents each data sample as a linear combination of oth-

rs. Different from the sparse representation, Locality constrained

inear Coding (LLC) [51] and collaborative neighborhood represen-

ation (CNR) [52] are other two algorithms for data representation.

ased on CNR and LLC, Dornaika et al. [53] proposed a graph con-

truction method named weighted regularized least square and a

wo phase method for object categorization. Sparse graphs such as

dopting L 1 regularization can provide sparse graphs which have

een proved to be very powerful in many real learning problems.

owever, their computational cost is very expensive. Moreover, it

s not very clear if sparse graphs take into account data locality.

n this paper, we propose a new unsupervised graph affinity learn-

ng method for saliency detection based on self-representation of

mage regions, and the Laplacian regularization is used to preserve

he local smoothness between image regions. To the best of our

nowledge, our work is the first attempt to learn the affinity ma-

rix for ranking based saliency detection in a totally unsupervised

ay. 
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Fig. 1. Pipeline of our proposed saliency detection approach. 
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3 In this paper, each graph “node” represents an image “superpixel”, so they re- 

fer to the same thing. We will use them interchangeably for different explanation 

purposes. 
.2. Manifold ranking 

Manifold ranking (MR) is initially used for pattern classification

54] , and it exploits the intrinsic manifold structure of data for

raph labelling. Given a dataset X = { x 1 , . . . , x l , x l+1 , . . . x n } ∈ R 

d×n ,

here d is the dimension of each data, and n is the total number

f data points. Part of data points are labelled as queries and the

est need to be ranked according to their relevances to the queries.

his can be described by an indicator vector y = [ y 1 , . . . , y n ] 
T 
, in

hich y i = 1 if x i is a query, and y i = 0 otherwise. The aim of

anifold ranking is to find a ranking function F : X → R 

n which

ssigns a ranking value f i to each data point x i , and it can be

ritten in a vector form f = [ f 1 , . . . , f n ] 
T 

. Next, a graph G = ( V, E )
ith nodes V and edges E is established on the dataset, where the

odes V correspond to the data points of X , and the edges E are

eighted by an affinity matrix A = 

[
a i, j 

]
n ×n 

, the degree matrix of

 is D = diag { d 11 , . . . , d nn } , where d ii = 

∑ n 
j=1 a i j . Then, the optimal

anking solution of queries are obtained by solving the following

ptimization problem: 

ˆ 
 = arg min 

f 

1 

2 

⎛ 

⎝ 

n ∑ 

i, j=1 

a i j 

∥∥∥∥∥
f i √ 

d ii 
− f j √ 

d j j 

∥∥∥∥∥
2 

+ μ
n ∑ 

i =1 

‖ 

f i − y i ‖ 

2 

⎞ 

⎠ , (1) 

here the first term in Eq. (1) is the smoothness constraint which

orces a good ranking function that should not change too much

etween nearby points, and the second term is the fitting con-

traint which implies that the ranking function should not differ

oo much from the initial query assignment. The parameter μ con-

rols the balance of the two constraints. In the PageRank [55] and

pectral clustering algorithms [41] , a similar concept is also used.

he minimum solution of (1) is computed by setting the deriva-

ive of the above function respect to F to be zero. In previous

orks [32,34,35] , MR is used for saliency detection and achieves

reat success. In [32,35] , MR is directly used in their work and

he results outperform most of the state-of-the-art saliency detec-

ion methods in terms of accuracy and computationally efficient.

i et al. [34] uses MR to get a coarse saliency map, then the reg-

larised random walking is used to restrict the Dirichlet integral

o be as close to the prior saliency distribution for final saliency

etection. 

Our work is most related to saliency detection based on mani-

old ranking [32,33] and affinity learning based diffusion [56] . In

32,33] , the image was represented as a close-loop graph with

uperpixels as nodes. These nodes were ranked based on the

imilarity to background and foreground queries, based on affin-

ty matrices. Saliency detection was carried out in a two-stage

cheme to extract background regions and foreground salient ob-

ects efficiently. In [56] , the authors constructed an initial lo-

al neighbour graph by using manually set function, then they

earnt an affinity graph by using graph-based semi-supervised
earning. With the learned affinity graph, they firstly used four

mage borders as seeds but removed boundary nodes that are

ikely to belong to boundary-cropping objects. Next, they used

he proposed affinity learning based diffusion to perform diffusion

n the seeds separately, and reverse each map to suppress the

ackground and highlight potential objects. Finally, four border-

pecified maps were superpixel-wisely multiplied to obtain the fi-

al saliency map. Compared to previous works, there are new con-

ributions in our work, including: (1) Instead of using the fixed

raph pre-computed by manually set functions (i.e., the Gaussian

ernel function) as in [33] , we propose an automatic affinity graph

earning approach to learn the similarities between image regions.

he self-representation graph learning model is derived from the

elf-similarity of image patches which is widely used in many im-

ge processing tasks such as de-noising, super-resolution. The lo-

al smoothness is also taken into consideration by using a Lapla-

ian regularization; and (2) In [33] , all the initial labels equally

ontribute to the classifying function but the global saliency con-

dence of each image region implied in the affinity graph is not

aken into consideration. In our proposed method, we integrate the

lobal saliency confidence prior implied in the learnt affinity ma-

rix during the saliency ranking process, inducing a weighted man-

fold ranking saliency detection method. 

. The proposed algorithm 

As aforementioned, our proposed saliency detection algorithm

onsists of two parts. In the first part, we will learn an affin-

ty matrix in an unsupervised manner. In the second part, we

et image boundary regions as background queries and use tra-

itional manifold ranking model described by Eq. (1) to obtain a

oarse saliency map. Based on the coarse saliency map, we ex-

ract some regions which have been assigned higher saliency val-

es as foreground queries. By taking the saliency confidence of

ach region obtained from the learned affinity matrix into consid-

ration, we use a weighted manifold ranking model to estimate

he final saliency map from the extracted foreground queries. In

uch a manner, the regions with higher saliency confidences will

e assigned higher saliency values. The pipeline of the proposed

pproach is depicted in Fig. 1 . 

.1. Affinity graph learning 

Similar to previous graph based saliency methods, we first par-

ition the input image I into n superpixels 3 S = { s 1 , . . . , s n } by us-

ng the Simple Linear Iterative Clustering (SLIC) [57] algorithm.
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Fig. 2. Learning affinities of image region pairs. (a) Original image, (b) Traditional affinity matrix calculated by the Euclidean distance of feature vectors and Gaussian heat 

kernel function. (c) Affinity matrix learned by our unsupervised method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Unsupervised affinity graph learning. 

Input: Original feature matrix X and an initial affinity matrix A 0 

Initialization: Parameters λ and β , t = 0 , ε = 0 . 0 0 0 01 

Repeat 

1. Calculate the graph Laplacian of A 0 , L t = D t − A t ; 

2. Get W t+1 by solving Eq. (8); 

3. Update A by A t+1 = 

1 
2 

(| W t+1 | + 

∣∣W t+1 
T 
∣∣); 

4. t = t + 1 ; 

Until ‖ W t − W t+1 ‖ 2 F < ε
Output: Affinity matrix A 
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For each superpixel s i , we extract color and texture information

to form a d -dimensional regional feature vector x i ∈ R 

d , then all

the feature vectors of superpixels are ensembled to form a feature

matrix X = { x 1 , . . . , x n } ∈ R 

d×n . Based on self-representation the-

ory, each feature vector x i in X can be represented by a liner com-

bination of others with different coefficients. The goal is to obtain

a coefficient matrix W = { w 1 , . . . , w n } ∈ R 

n ×n , in which each w i is

the coefficients of x i . Traditional solution of obtaining W can be

expressed as the following regularized problem: 

ˆ W = arg min 

W 

‖ 

X − X W ‖ 

2 
F + λ‖ 

W ‖ p , (2)

where ‖ · ‖ F denotes the Frobenius norm of a matrix, and ‖ · ‖ p rep-

resents p -norm of a matrix. In Eq. (2) , the first term constraints

the representation residual to be small, the second term is a regu-

larization imposed on the coefficient matrix W , e.g., sparsity, low-

rank. 

Generally, the coefficient vectors of similar original data should

also be similar. Specifically, if x i is very similar to x j , then the cor-

responding coefficient vectors w i and w j should be close to each

other. This property can be constrained by the Laplacian smooth-

ness criterion. For all data pairs, this criterion can be written as:

n ∑ 

i, j=1 

∥∥w i − w j 

∥∥2 
z i j = T r 

(
W L W 

T 
)
, (3)

where L is the graph Laplacian of a given weight matrix Z , i.e.,

L = D 

Z − Z , where D 

Z is a diagonal matrix with D 

Z 
ii = 

∑ n 
j=1 z i j . 

By taking the Laplacian smoothness into consideration, we ex-

press our affinity graph learning model as follows 

ˆ W = arg min 

W 

‖ 

X − X W ‖ 

2 
F + λ‖ 

W ‖ 

2 
F + βT r 

(
W L W W 

T 
)
, (4)

where L W is the Laplacian matrix of the affinity matrix W , λ and

β are two positive balance parameters. Here we enforce minimiz-

ing ‖ W ‖ 2 F for computation efficiency and preventing from the triv-

ial solution. Other regularization such as L 2, 1 -norm for robust to

outliers, L 1 norm for sparsity, and nuclear norm for low rank can

be used to replace the Frobenius norm. If L W is fixed, the mini-

mization problem of Eq. (4) will be convex and have a closed form

solution with a global minimum. However, L W is unknown since

the graph itself is unknown. To solve this problem, we propose

an recursive method to get the optimal coefficient matrix (i.e., the

affinity matrix). We start with an initial rough graph, and use its

corresponding Laplacian matrix to impose smoothness of the coef-

ficient vectors of the unknown matrix W . Then the estimated W

will be used to get a new Laplacian matrix for next iteration. In

such a circular recursion, we can get the final optimal coefficient

matrix W . 

Specifically, a rough weight matrix Z is computed in advance

by using any traditional graph construction method, its Laplacian

matrix is calculated by L = D 

Z − Z , then the coefficient matrix W
s estimated by minimizing the following problem: 

ˆ 
 = arg min 

W 

H ( W ) . (5)

nd 

 ( W ) = ‖ 

X − XW ‖ 

2 
F + λ‖ 

W ‖ 

2 
F + βT r 

(
W L W 

T 
)

= T r 
(
( X − XW ) 

T 
( X − XW ) 

)

+ λT r 
(
W 

T W 

)
+ βT r 

(
WL W 

T 
)
. (6)

he solution of W can be obtained by differentiating H ( W ) with

espect to W as follows; 

∂H ( W ) 

∂ W 

= −2 X 

T X + 2 X 

T XW + 2 λW + 2 ρWL . (7)

e set Eq. (7) to 0, and obtain 

X 

T X + λI 
)
W + W ( 2 ρL ) = X 

T X , (8)

here I is a n × n identity matrix. Eq. (8) is a Sylvester equation,

nd we solve it using the sylvester function of Matlab to get W . 

Finally, the affinity matrix A is obtained by A = 

| W | + | W 

T | 
2 . 

The whole procedure to obtain A can be summarized in

lgorithm. 1 . Note that the learned affinity matrix A can be re-

arded as a full connected graph, we need to remove some re-

undant connection of graph nodes. Similar to previous methods

32,34] , each node is connected to those nodes neighboring it and

he nodes sharing common boundaries with its neighboring nodes.

ll the nodes on the four sides of image are also connected and

ach node is not connected with itself. 

Fig. 2 shows an example of our learned affinity matrix. Fig. 2 (a)

s an input image, it is composed of three main parts: the dark

reen forest, the sika deer and the yellow meadow. Fig. 2 (b) is the

raditional affinity matrix calculated by the Euclidean distance of

eature vectors and Gaussian heat kernel function, as can be seen,

t contains some noisy values and the relevance of regions from

he same image part are not very strong (i.e., the affinity values

etween similar image regions are not large enough). On the other

and, our method can learn a clearer block-diagonal affinity ma-

rix, noisy values can be efficiently suppressed and the relevance
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Fig. 3. An example of saliency confidences implied in the affinity matrix. (a) Original image, (b) degree value of each superpixel, (c) final saliency map obtained by using 

the learned affinity matrix. 

Fig. 4. Quantitative comparisons of saliency maps generated by different methods. 
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f similar image regions are stronger, as shown in Fig. 2 (c). This

roperty can benefit the following saliency ranking and make the

alient parts more separable from background. 

.2. Ranking from background seeds 

It is observed that background often presents local or global ap-

earance connectivity with the four image boundaries. This bound-

ry prior observation has been used in many previous saliency

etection works [32,34,35] and verified more general and effec-

ive than previously used center prior [58,59] . In this work, we

lso follow this boundary prior and assume that the four image

oundaries as background. Note that sometimes the salient ob-

ects may also touch image boundaries, and some works try to

educe the salient foreground noises in the image boundary re-

ions object [34,35,60] and improve the final saliency detection

esults. But their is no algorithm which can absolutely remove

he foreground noises from image boundaries because distinguish-

ng salient regions and background regions is a difficult problem

n itself. How to remove salient noisy areas from boundaries is

ot the focus of this work. In this step, similar to the work in

32] , we use the nodes on each side of image as labelled back-

round queries, then compute the saliency of other nodes based

n their relevances to those queries as background labels by tra-

itional manifold ranking. The four ranked maps from the back-

round queries are then integrated to generate a coarse saliency

ap, as shown in Fig. 1 . For this first ranking step, we only aim

o obtain a coarse saliency map by setting image boundary regions

s background queries, i.e., the boundary regions are set as back-

round queries with probability 1 (no weight needed). For simplic-
ty, we use traditional manifold ranking for initial saliency estima-

ion. In fact, we have tested the initial saliency estimation by using

eighted manifold ranking, but it makes little sense to the final

esults. 

.3. Weighted ranking from foreground seeds 

In the coarse saliency map obtained from the second step, some

oreground areas are not fully highlighted and some background

reas are falsely detected as foreground. Previous method [32] di-

ectly applies binary segmentation on the coarse saliency map

rom the first stage, and take the labelled foreground nodes as

alient queries. The saliency of each node is computed based on

ts relevance to foreground queries for the final map. In this man-

er, the saliency confidences of image regions implied in the affin-

ty matrix are not fully exploited. In our work, in order to fully

apture the salient regions, we simply set the first half of super-

ixels with higher saliency values in the coarse saliency map as

alient foreground seeds, and the final saliency of each region is

btained by ranking with weight which is modelled by saliency

onfidences of foreground seeds. We model the saliency confi-

ence of each region i as its degree value d ii on the affinity graph.

iven the learned affinity matrix A , in which A i j represents the

imilarity between region i and j . Thus the i th row/column rep-

esents the similarity between image region i and other regions.

rom the perspective of global contrast, if a region belongs to a

alient object, it should have high contrast (low similarity) with

ost of other regions, i.e., A i j ( j = 1 . . . n, j � = i ) should be small

or most j . Therefore, for the degree matrix of A , d ii should be

mall if image region i belongs to a salient object. This property
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Fig. 5. Quantitative performance comparison of different methods on the ECSSD dataset. (a) Precision-recall curves, (b) F-measure curves, (c) MAE values, (d) AUC values, 

and (e) OR values. 
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Fig. 6. Quantitative performance comparison of different methods on the SOD dataset. (a) Precision-recall curves, (b) F-measure curves, (c) MAE values, (d) AUC values, and 

(e) OR values. 
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u  
mplied in the affinity matrix can be used as the saliency confi-

ence of different image regions. Fig. 3 gives an example, Fig. 3 (a)

s an input image, the degree value of each superpixel is shown in

ig. 3 (b). As can be seen, salient part (the rabbit) of the image will

ave smaller degree values, which verifies that the global contrast
nformation is implied in the affinity matrix and it can be used to

mprove traditional saliency ranking results. 

By taking the saliency confidences into consideration, the sper-

ixels with higher saliency confidences (with smaller degree val-

es) will be assigned higher saliency values in the final saliency
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Fig. 7. Quantitative performance comparison of different methods on the DUT-OMRON dataset. (a) Precision-recall curves, (b) F-measure curves, (c) MAE values, (d) AUC 

values, and (e) OR values. 
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Fig. 8. PR curve comparison of each individual component on SOD dataset. 
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ap. In addition, in order to reduce ranking errors, we also set

he other part of superpixels with smaller saliency values in the

oarse saliency map as sink points during our weighted ranking

rocess. Specifically, after we obtain the coarse saliency map, we

ompute a threshold value T by Otsu [61] , the regions with saliency

alues smaller than T are set as sink points. Finally, we derive the

eighted MR model as follows: 

ˆ 
 = arg min 

f 

1 

2 

×

⎛ 

⎝ 

n ∑ 

i, j=1 

w i j 

∥∥∥∥∥
δi f i √ 

d ii 
− δ j f j √ 

d j j 

∥∥∥∥∥
2 

+ μ
n ∑ 

i =1 

∥∥δi f i − d m 

ii y i 
∥∥2 

⎞ 

⎠ , (9) 

here m determines the degree of saliency confidences on initial

abels, and it is set to 1/2 in our work, enabling a salient super-

ixel to have a relatively higher confidence than a background su-

erpixel. δi = 0 if superpixel i is a sink point and 1 otherwise. The

ink points be intuitively imagined as “black holes”, where ranking

cores spreading to them will be absorbed and no ranking scores

ould escape from them [60,62] . This can be understood in this

ay: the superpixels which are set as sink points are those with

maller saliency values in the coarse map, they are very likely

o be background. By setting appropriate sink points, these back-

round regions can be effectively suppressed during the ranking

rocess. 

By writing Eq. (9) in its matrix form and differentiating the

unction respect to f , we have 

I − αD 

−1 A I s 
)
f = ( 1 − α) D 

− 1 
2 y , (10) 

here α = 1 / ( 1 + μ) and A is the affinity matrix learned in

ection 3.1 . I s = diag ( δ1 , δ2 , . . . δn ) is the sink point indicator ma-

rix. 

From Eq. (10) , the relevance scores between labeled and unla-

eled graph vertices can be obtained as 

 ∝ 

(
I − αD 

−1 A I s 
)−1 

D 

− 1 
2 y . (11) 

Finally, the saliency value of each superpixel S ( i ) can be directly

ssigned by the ranking score: 

 ( i ) = f ( i ) , i = 1 , 2 , . . . , n. (12)

Similar to [63] , we also apply an adaptive contrast enhancement

or the final saliency map with the following sigmoid mapping: 

 ( x ) = 

1 

1 + exp ( −γ ( x − τ ) ) 
, (13) 

here τ is an adaptive threshold obtained using Otsu’s binary

hreshold method [61] and γ controls the overall sharpness. We

lso set γ = 20 in our experiments. 

. Experimental results 

.1. Experiment setup 

For most of the saliency detection datasets, the image size is

round 300 × 400 pixels. In order to balance the computation effi-

iency and accuracy, the number of segmented super-pixels is of-

en set to 200 as to the image size in most of previous works. Em-

irical experiments also demonstrate that the final results change

ittle while the number of segmented super-pixels varies between

50 and 300 when the image size is about 300 × 400 pixels. There-

ore, in order to keep consistent with previous works, we also set

he number of segmented super-pixels to 200 in our work, i.e.,

 = 200 in all the experiments. In the affinity graph learning step,

and β are all set to 1 empirically, the effects of λ and β on

0  
he learned affinity graph matrix is out of the scope of this work.

= 1 / ( 1 + μ) is set to 0.99 as previous works [32,35] . In our ex-

eriment, both color and texture features are used, including RGB

olor, Lab color, HSV color, opponent color [64] and local binary

attern (LBP) [65] . For each superpixel, we use the mean value

f each feature to assemble a 13-dimensional feature vector. All

he feature vectors of superpixels are then used for affinity graph

earning. 

.2. Datasets 

The performance evaluation is conducted on three challeng-

ng datasets: SOD [66] , ECSSD [67] and DUT-OMRON [32] . SOD

onsists of 300 images collected from the Berkeley segmentation

ataset and most of which have multiple salient objects. ECSSD

ontains 10 0 0 semantically meaningful but structurally complex

mages. DUT-OMRON is another challenging dataset which contains

168 images with complex background. 

.3. Comparison with state-of-the-art methods 

In the experiments, we qualitatively and quantitatively compare

he proposed approach with fifteen state-of-the-art approaches, in-

luding thirteen unsupervised methods: SEG [68] , RC [69] , SF [70] ,

R [32] , DSR [71] , PCA [72] , CA [73] , RBD [74] , RRW [34] , CHS [17] ,

ST [63] , SMD [75] and RS [33] , and two supervised deep learning

ased methods: DS [20] and DCL [22] . Fig. 4 shows the qualita-

ive comparisons of saliency maps generated by our approach and

ther different methods. As can be seen, our method can clearly

ighlight the salient objects in an image, the background areas

re efficiently suppressed. This verifies that the weighted mani-

old ranking can assign higher saliency values to those superpixles

hich are with higher saliency confidences implied in the affinity

atrix, or vice versa. Due to the fact that the learned affinity ma-

rix can reveal the intrinsic relevance between different superpix-

ls, our approach is also applicable for images with complex back-

round. 

For quantitative evaluation, we use precision-recall curve, F-

easure curve, mean absolute error (MAE), area under curve (AUC)

nd overlapping ratio (OR) to evaluate the performance of our al-

orithm. The precision and recall scores are computed by bina-

izing the estimated saliency maps with a threshold sliding from

 to 255 and compare the binary maps with ground truth maps.
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Fig. 9. Failure case of our method. (a) Original image, (b) saliency detection result of our method. 
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Usually, precision and recall are both important and therefore F-

measure is used as the overall performance measure which can be

written as: 

F β = 

(
1 + β2 

)
· precision · recall 

β2 · precision + recall 
, (14)

where β2 is set to 0.3 as suggested in [76] to emphasize precision.

As neither precision nor recall measure evaluate the true negative

saliency assignments, we also use the mean absolute error (MAE)

as a complementary. The MAE score calculates the average differ-

ence between the saliency map M and the ground truth GT , it is

computed as: 

M AE = 

1 

H × W 

H×W ∑ 

i =1 

| M ( i ) − GT ( i ) | , (15)

where H and W are the height and width of the input image,

respectively. Meanwhile, we use true positive and false positive

rates to calculate the AUC score. OR is defined as the overlap-

ping ratio between the segmented object mask S ′ and ground truth

G : OR = | S ′ ∩ G | / | S ∪ G | , where S ′ is obtained by binarizing S using

an adaptive threshold, i.e., twice the mean values of S as in [77] . 

Quantitative evaluation results of different methods on three

datasets are shown in Figs. 5 –7 , respectively. As can be seen, our

approach can outperform all other state-of-the-art unsupervised

methods. Note that for both of the three datasets, our method

can perform better than all of the previous graph based methods

such as MR, RRW and RS, which demonstrate the validity of the

proposed affinity graph learning and weighted manifold ranking.

Compared to deep learning based methods, our approach can not

win the performance. However, deep learning based methods need

large amount of training examples, while our method is totally un-

supervised. 

In order to verify the superiority of our learned affinity ma-

trix and the effect of the global saliency confidences, we also give

the result which is obtained by using traditional Euclidean distance

and Gaussian kernel function based affinity matrix and the result

without global saliency confidences. We show the precision-recall

curves of SOD dataset in Fig. 8 . As can be seen, the learned affin-

ity matrix can significantly promote the final results. The global

confidences implied in the affinity matrix can also benefit the fi-

nal results. In addition, in order to verify the effect of the Lapla-

cian regularization term used in the affinity graph learning model,

we also plot the precision-recall curve result by using the affin-

ity graph learned without the Laplacian regularization. As can be

seen, the Laplacian regularization term can also facilitate the final

results. 
.4. Running time 

For testing the running time of our method, we implemented

t by using Matlab R2016a on a laptop with Intel Core i5-4200M

.5 GHz CPU and 8 GB RAM. The average running time of an image

ith size 400 × 300 is about 1.4 s on ECSSD dataset. The mainly

ime cost parts are the affinity matrix learning process and super-

ixel segmentation, it spends about 0.4 s to generate the superpix-

ls and 0.7 s to learn the affinity matrix, the actual saliency com-

utation spends only about 0.3 s. 

.5. Limitation and analysis 

Fig. 9 shows a failure case, where the background and fore-

round in original image is very similar. In such a case, there

s small difference between background and foreground, and the

imilarity graph of image regions is hard to learn. However, it is

lso challenging for the state-of-the-arts even deep learning based

ethods. Objectness measure may be used to solve this problem.

owever, the current objectness measure methods are not accurate

nough. In existing methods, different features are often extracted

or saliency detection, but they concatenated different features di-

ectly. Since different features focus different properties of an im-

ge, the feature spaces and scales are different, directly concatenat-

ng may not leverage the complementary information of different

eatures. Thus, in our future work, we intend to learn the similarity

raph in a multi-view perspective. 

. Conclusion and future work 

We present a bottom-up approach to detect salient regions in

mages through weighted manifold ranking on a learned graph.

ifferent from traditional graph based saliency detection methods,

e use an unsupervised manner to learn the affinity matrix of the

raph which is composed by image superpixels. Our learned affin-

ty matrix can better reveal the intrinsic relevances between su-

erpixels. By considering the global saliency confidences implied

n the learned affinity matrix, we propose a saliency confidences

eighted manifold ranking for final saliency detection, this makes

hose superpixels with higher saliency confidences will be assigned

igher saliency values in the final saliency map and background el-

ments can be efficiently suppressed. 

We have also realized that deep learning has obtained great

uccess in the area of saliency detection. Thus we are going to

ombine deep learning for saliency detection in our future work. 
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