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Abstract

Multiview clustering (MVC) collects complementary

and abundant information, which draws much atten-

tion in machine learning and data mining community.

Existing MVC methods usually hold the assumption

that all the views are complete. However, multiple

source data are often incomplete in real‐world appli-

cations, and so on sensor failure or unfinished collec-

tion process, which gives rise to incomplete multiview

clustering (IMVC). Although enormous efforts have

been devoted in IMVC, there still are some urgent is-

sues that need to be solved: (i) The locality among

multiple views has not been utilized in the existing

mechanism; (ii) Existing methods inappropriately force

all the views to share consensus representation while

ignoring specific structures. In this paper, we propose a

novel method termed partial MVC with locality graph

regularization to address these issues. First, followed

the traditional IMVC approaches, we construct

weighted semi‐nonnegative matrix factorization mod-

els to handle incomplete multiview data. Then, upon

the consensus representation matrix, the locality graph

is constructed for regularizing the shared feature ma-

trix. Moreover, we add the coefficient regression term

to constraint the various base matrices among views.

We incorporate the three aforementioned processes

into a unified framework, whereas they can negotiate
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with each other serving for learning tasks. An effective

iterative algorithm is proposed to solve the resultant

optimization problem with theoretically guaranteed

convergence. The comprehensive experiment results

on several benchmarks demonstrate the effectiveness

of the proposed method.
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1 | INTRODUCTION

Clustering has been intensively studied by combing information to categorize unlabelled data
items into appropriate groups.1‐16 With increasing data collection, many data in the real‐world
could be presented from different perspectives, which are termed multiview data in the lit-
erature. Multiview data could provide more abundant information than the traditional single‐
view feature representation to reveal the intrinsic structure of the data. Existing multiview
clustering (MVC) approaches can be summarized into the following four strategies. The co-
training approaches for MVC iteratively product multiple clustering results that can provide
predicted clustering labels for other views. In this way, besides extracting the specific cluster
information from the corresponding view, the clustering results are forced to be consistent
across views. The second method bases on the assumption that high‐dimensional data points
are drawn from the low‐dimensional spaces and therefore each cluster is formed from one of
them. By following the multiple kernel learning framework, multiple kernel clustering (MKC)
seeks an optimal kernel similarity matrix through linear combination of predefined kernels.
The last category extends semi‐nonnegative matrix factorization (SNMF) to incorporate mul-
tiple source information to learn consensus latent representation in Reference [1]. The essential
idea is to optimize a united representation for downstream clustering task with the respective
linear transformation.2 In this paper, we focus on the multiview SNMF clustering methods.

Despite many MVC algorithms have been proposed and achieved great achievements in
various applications, traditional MVC algorithms cannot effectively deal with multiview data
with incomplete features. However, incompleteness happens quite common in real‐world ap-
plications. For example, questionnaire forms take missing values due to unfinished processes
and medica examines can be partially done for the lack of financial support. All these factors
could contribute to incomplete multiview data. Therefore, the incomplete multiview clustering
algorithms (IMVC) have attracted extensive attention in recent years. Followed the multiview
SNMF methods, NMF‐based IMVC methods consider the incomplete data items with zero
weight and therefore can be regarded as a special weighted version for NMF MVC. Most of
them take the strategy of combining the view‐specific and common representations into a
unified one.7‐10,17‐28 They usually accomplish the missing features with mean values, and then
use the weighted NMF to reduce the weight of the missing samples to obtain a consistent
representation.29 These weighted NMF methods commonly impose different constraints on the
basis matrix or consensus representation for capturing different properties. Among these
methods, ℓ ℓ,2,1 1, and ℓF norm constraints are adopted on the latent representations or basis
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matrices, respectively. However, it is limited to the following two points: (i) The locality among
multiple views have not been utilized in existing mechanism. They usually neglect the intrinsic
local structure of views, which could degrade clustering performance. (ii) Existing methods
inappropriately force all the views share consensus representation while ignoring specific
structures.

The graph‐based IMVC methods utilize the geometric structure of data.18,30,31 However, it is
naturally difficult to construct an accurate graph similarity due to the lack of partial samples.30

First estimates the missing features and then applies with complete MVC mechanism. Zhao
et al. obtained consistent representations to guide the generation of graphs and therefore
contain the local structure.18 However, when the missing rate is high, the filling strategy will
dominate the learning of the representation, resulting in the filled samples being connected
with each other. Moreover, there graphs are constructed in high‐dimensional space and
therefore cause huge time complexity.

To address the above issues, this paper proposes a novel IMVC method to fuse the low‐
dimensional representation learning and locality graph. First, followed the traditional IMVC
approaches, we construct weighted semi‐NMF models to handle incomplete multiview data.
Then, upon the consensus representation matrix, the locality graph is constructed for reg-
ularizing the shared feature matrix obtained from multiple sources. Moreover, we add the base
coefficient regression ℓ2,1‐norm regularization term to constraint the various base matrices
among views. This term is here introduced to constraint sparseness in rows. We incorporates
the three aforementioned processes into a unified framework, whereas they can negotiate with
each other serving for learning task. The final learned graph not only considers the incomplete
data features but also ensures locality among all views.

Compared with existing IMVC methods, the main advantages of the proposed partial
multiview clustering with locality graph regularization (PMVC‐LGR) can be included as
follows:

• We induce the ℓ2,1 regularization term into traditional NMF based incomplete MVC ap-
proaches. This regularization not only ensures sparsity in various base matrices but also
performs feature selection in the original model.

• The constructed graph is utilized for preserving the locality in the consensus representation
while also encourages the view‐consistency and degrades the intra‐view disagreements.
These factors greatly promote the clustering performance of our proposed method.

• Comprehensive experiment are conducted on several benchmarks data sets. The experi-
mental results clearly demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2 introduces some notations and
related work in our paper. Section 3 presents the proposed optimization objective and the three‐
step alternate algorithms. Section 5 shows the experimental results with evaluation. Section 6
concludes the paper.

2 | PRELIMINARIES AND RELATED WORK

In this section, we introduce some necessary notations and preliminaries in our paper.
Throughout this paper, we use boldface lowercase letters to denote matrices. The i j( , )th ele-
ments of a matrix U is referred as Uij. The notations are summarized in Table 1.
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2.1 | Semi‐NMF for single view and multiple views

The semi‐NMF proposed in Reference [32] behaves as a constrained extension of NMF, which
under the constraint that the coefficient matrix should be nonnegative. Specifically, given the
single‐view data matrix ∈X d N× , the semi‐NMF utilizes base matrix ∈U d k× and the
nonnegative coefficient matrix ∈V k N× to reconstruct the original matrix X.

The optimization goal of SNMF can be mathematically formulated as follows:

∥ ∥ ≥X UV Vmin − , s.t. 0.F
U V,

2 (1)

As can be seen, Equation (1) seamlessly performs dimension reduction from original
space to lower dimension.32 Further proposes an iterative optimization algorithm to solve
Equation (1). The updating strategy can be rewritten as follows:

(i) With V being fixed, U can be updated by

⊤ ⊤U XV VV= ( ) .−1 (2)

(ii) With U being fixed, V can be iteratively updated by

←
⊤ ⊤ ⊤

⊤ ⊤ ⊤
V V

X U V U U

X U V U U

( ) + [ ( ) ]

( ) + [ ( ) ]
,ij ij

ij ij

ij ij

+ −

− +
(3)

where the positive and negative elements of matrix M are denoted as: Mij
+ and Mij

−.

For multiview data setting, the fundamental optimization formulation can be easily ex-
tended as follows:

TABLE 1 Main notations used in the paper

Notation Meaning

MVC Multiview clustering

IMVC Incomplete multiview clustering

NMF Nonnegative matrix factorization

n The number of samples

m The number of or views

k The number of clusters

d v( ) The dimension of vth view

∈U v d k( ) ×v( ) The vth view's base matrix

X v( ) The vth view's data matrix

V The shared representation matrix

S The learned local graph

B v( ) The regression matrix for vth view
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∑∥ ∥ ≥X U V V Vmin − + Ω( ), s.t. 0,
v

m

v v
F

U V,
=1

( ) ( ) 2

v( )
(4)

where VΩ( ) denotes various regularization terms for the consensus representation matrix V .
They take the assumption that multiview data could share the same latent representation in
low‐dimensional space. Among these methods, ℓ ℓ,2,1 1, and ℓF norm constraint are adopted into
Equation (4) to regularize the representation matrix.

2.2 | Weighted NMF for IMVC

To handle IMVC with samples obtaining missing features, the natural way to extend Equa-
tion (4) is first to define a weight matrixW which indicates the existence of complete samples
in views. The weight matrixW can be formulated as follows:

⎧⎨⎩
j i

W =
1 if ‐ th instance is in the ‐ th view ,

0 otherwise .
jj
i( ) (5)

With the weight matrixW , Equation (4) can be extended as the following equation:

∑∥ ∥ ≥X U V W Vmin ( − ) , s.t. 0.
i

m

i i T i
F

U V,
=1

( ) ( ) ( ) 2

i( )
(6)

By solving Equation (6), we can get the shared representation for multiple incomplete‐view samples.

3 | PROPOSED METHOD

Although Equation (6) could cope with the basic IMVC, the various basis matrices for multi-
view have not been utilized. Despite sharing the same representation, the basis for each view
should be orthogonal which indicates differences in clustering centers. Thus, we design to align
the basis matrices of respective views to approximate the identity matrix to ensure orthogon-
ality, which can be fulfilled as follows:

∑∥ ∥ ∥ ∥⊤B U I Bmin − + .
v

m

v v
F

v

U V B, , ,
=1

( ) ( ) 2 ( )
2,1

v v( ) ( )
(7)

Based on Equation (7), the learned basis centers can be disjoint with each others which
makes them more discriminate. Further, the ℓ2,1 norm on B v( ) simultaneously performs di-
mension reduction form original dimension dv to k dimension. The learning process will
automatically selects top k vital dimension features to represent data items.

Moreover, after obtaining the consensus representation V , the local structures hidden
among views should be preserved and we adopt the local graph S to preserve locality, which is
formed by minimizing ∑ ∥ ∥v vS −

i j

n
ij i j, =1 2

2. To be specific, a large value of Sij indicates with
high probability that they are in the same cluster. By introducing local graph regularization
term, the model preserves the neighbourhood relationships in the unified space.
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Integrating the above parts into an unified objective function, we formulate the final for-
mula of our proposed as follows:

∑ ∑∥ ∥ ∥ ∥

∥ ∥ ∥ ∥ ∥ ∥

≥ ≥

⊤

⊤

⊤

( )

v v

α λ

X U V W S

B U I B S

V S S 1 1

min ( − ) +
1

2
−

+ − + + ,

s.t. 0, 0, = ,

v

m

v v v
F

i j

n

ij i j

v v
F

v
F

U V

B S

, ,

,
=1

( ) ( ) ( ) 2

, =1

2
2

( ) ( ) 2 ( )
2,1

2

v

v

( )

( )

(8)

where S is the learned local graph andV is the respective consensus representation matrix. The
first term performs the incomplete NMF with multimodality data. The following part in
Equation (8) ensures the orthogonality of the basis matrices for each view and also preserves
the local structure for the consensus representation.

Regarding of Equation (8), our proposed model has the following merits: (i) The induced
ℓ2,1 regularization term not only ensures sparsity in various base matrices but also performs feature
selection in the original model. (ii) The constructed graph is utilized for preserving the locality
in the consensus representation while also encourages the view‐consistency and degrades the
intra‐view disagreements. These factors greatly promote the clustering performance of our
proposed method.

4 | OPTIMIZATION

It is difficult to simultaneously optimize Equation (8) over all the variables. In this section, we
propose an alternate algorithm to solve this optimization problem.

4.1 | Update U v( )

With V B, v( ) and S fixed, for eachU v( ), we need to solve the following problem in Equation (9):

∑ ∥ ∥ ∥ ∥⊤ ⊤αX U V W B U Imin ( − ) + − .
v

m

v v v
F

v v
F

U
=1

( ) ( ) ( ) 2 ( ) ( ) 2
v( )

(9)

Setting the derivation of the objective function with respect toU v( ), we can get the following
equation:

⊤ ⊤αU V X W V B B U I( − ) + ( − ) = 0,v v v v v v( ) ( ) ( ) ( ) ( ) ( ) (10)

where ⊤W W W=v v v( ) ( ) ( ) . According to the form of the Sylvester equation, Equation (10) can be
further reformulated into Equation (11) utilizing Kronecker product and vectorization operator
as follows:

⊗ ⊗⊤ ⊤α αI B B V W V I U X W V B( ( ) + ( ) )vec( ) = vec( + ).k
v v v

d
v v v v( ) ( ) ( ) ( ) ( ) ( ) ( )

v (11)

In this paper, we employ the lyap function following the work in Reference [19] to solve this
problem.
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4.2 | Update V

Fixing U B,v v( ) ( ), and S, the minimum problem for optimizing V is reduced into the following
problem:

∑

∑

∥ ∥

∥ ∥ ≥

⊤

v v

X U V W

S V

min ( − )

+
1

2
− , s.t. 0.

v

m

v v v
F

i j

n

ij i j

V
=1

( ) ( ) ( ) 2

, =1

2
2

(12)

The second term can be rewritten into the form of matrix according to Theorem 1.

Theorem 1. Note that L D S= − . L and D are the Laplacian matrix and degree matrix
of the symmetric similarity matrix S, respectively. Then we can get the following conclusion:

∑ ∥ ∥ ⊤v vS V LV
1

2
− = Tr( ),

i j

n

ij i j

, =1

2
2 (13)

where vi and vj are the ith and jth rows of matrix SV, i j, is the element of ith row and jth
column of S.

Proof. We can transform into the following equation mathematically:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑∑ ∑∑

∑ ∑∑

∥ ∥ ⊤ ⊤ ⊤

⊤ ⊤

⊤ ⊤ ⊤

( )v v v v v v v v

d v v v v

S S

S

V DV V SV V LV

1

2
− =

1

2
− 2 +

=
1

2
2 − 2

= Tr( ) − Tr( ) = Tr( ).

i

n

j

n

ij i j

i

n

j

n

ij i i i j j j

i

n

ii i i

i

n

j

n

ij i j

=1 =1

2
2

=1 =1

=1 =1 =1

(14)

The proof is completed. □

Thus, we can transform Equation (12) into minimizing the following problem:

∑∥ ∥ ≥⊤ ⊤X U V W V LV Vmin ( − ) + Tr( ), s.t. 0.
v

m

v v v
F

V
=1

( ) ( ) ( ) 2 (15)

The partial derivation of V( ) with respect to V is

∂

∂
⊤ ⊤V

V
W VU U LV W X U

( )
= + − .v v v v v v( ) ( ) ( ) ( ) ( ) ( )

(16)

According to the optimization of semi‐NMF32 and the KKT condition, we can get

⊤ ⊤W VU U LV W X U V( + − ) = 0.v v v v v v
jk jk

( ) ( ) ( ) ( ) ( ) ( ) (17)

Based on this, we can get the updating rule by Following the work in Reference [19], we
normalize the solution V andU v( ) by ←V VH−1 and ←U U Hv v( ) ( ) −1. Consequently, VH−1 and
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U Hv( ) −1 forms another solution of Equation (12), whereH is an invertible matrix and is defined
as ∑ ∑ ∑diag H H HH = ( , , …, )

i

n
i i

n
i i

n
ik1 2 .

4.3 | Update B v( )

Given U V,v( ) and S, the optimization for updating B v( ) can be reduced to

∥ ∥ ∥ ∥⊤B U I Bmin − + .v v
F

v

B

( ) ( ) 2 ( )
2,1

v( )
(18)

Similarly, through setting the derivation of B( )v( ) w.r.t B v( ) to zero, we can obtain the close‐
form solution for updating B v( ).

⊤B U U P U= (2 + ) 2 ,v v v v( ) ( ) ( ) −1 ( ) (19)

where
∂ ∥ ∥

∂
P B= v vB

B
( ) ( )

v

v

( )
2,1

( ) and P v( ) is diagonal matrix with its ith diagonal element being
∥ ∥B

1

i
v
,:

( )
2

.

4.4 | Update S

When U V,v( ) , and B v( ) are fixed, the optimization for S can be simplified as:

∑ ∥ ∥ ∥ ∥ ≥ ⊤S v v λ S S S 1 1min
1

2
− + , s.t. 0, = .

i j

n

ij i j F
S

, =1

2
2 2 (20)

Theorem 2. L is the Laplacian matrix of symmetry similarity matrix S and the i j, th
element ofQ is denoted as ∥ ∥Q v v= −ij i j 2

2, where vi is the ith row of matrix V . Then we can
obtain the equivalent representation.33

⊤V LV SQTr( ) = Tr( ). (21)

Proof. We can achieve this equation by mathematical derivation as following:

∑∑ ∥ ∥ ⊙⊤S v v 1 Q S 1 SQ
1

2
− =

1

2
( ) =

1

2
Tr( ).

i

n

j

n

ij i j

=1 =1

2
2 (22)

This finishes the proof. □

On the basis of Theorem 2, we optimize S by transforming into Equation (23)

∥ ∥ ≥ ⊤λSQ S S S 1 1min
1

2
Tr( ) + , s.t. 0, = .F

S

2 (23)

Analogous to Reference [34], we adopt a two‐step algorithm to gain a approximate result
efficiently. In the first step, we neglect the constraints and straightly acquire a close‐form
solution Equation (24) by setting the derivation w.r.t S to zero.

⊤

λ
S Qˆ = −

1

2
. (24)
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In the second step, we minimize the following problem to learn a approximate optimal
solution under a constrained condition:

∥ ∥ ≥ ⊤s tS S S S 1 1min
1

2
− ˆ , . . 0, = .F

S

2 (25)

For each column S j:, , the Lagrange function can be formulated as

∥ ∥ ⊤ ⊤( )S S τ S γ S1=
1

2
− ˆ − − 1 − .j j i j i j:, :, 2

2
:, :, (26)

where τj and γj are Lagrange multipliers. Therefore, combining the result of taking the deri-
vation with respect to S j:, and the KKT condition, we get

S max S τ 1= ( ˆ + , 0).j j j:, :, (27)

Considering the constraint ⊤S 1 1= , that is, ∑ S τ 1( ˆ + ) = 1
i

n
ij j=1

, we can obtain the update
rule for τj that

⊤

τ
S

n

1
=

1 + ˆ

− 1
.j

j:, (28)

We can update S j:, by Equation (27) after gaining τj. Then we perform
⊤

S =
S S+

2
to keep the

symmetry of graph S.
The alternate optimization algorithm terminates when objective function converges or

reaches the maximum number of iterations. Then we get an approximate optimal solution of
Equation (20) in an efficient fashion.

4.5 | Convergence analysis

In the iterative optimization process, when one variable is updated and the other variables are
kept fixed, these two subproblems are strictly convex. When optimizing a variable and fixing
other variables in each iteration, the goal of our algorithm will decrease monotonically. Until
the lower bound of the entire optimization function approaches 0, the algorithm will converge.
Also, the results of the evolution of the objective value on the benchmark data sets demon-
strates the convergence, as shown in Figures 2, 3, and 4.

5 | EXPERIMENTS

In this section, we introduce the data sets used in this paper and the setting of generating
incomplete samples. Then, we evaluate the effectiveness of our proposed method and compared
state‐of‐the‐art algorithms on the six natural or manual incomplete data sets.

5.1 | Data sets

The data sets used in our experiments are BUAA‐visnir face database (BUAA)*, orlRnSp†, 3
Sources‡, BBC.35
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BUAA. The BUAA data set contains 1350 samples, belonging to 150 clusters. Each of sample
are composed with visible images (VIS) and near infrared images (NIR). This makes the data
set naturally been a two‐view data set.

orlRnSp. orlRnSp data set has 400 face images. We construct two views one based on raw
pixel values and the other comprising of HOG features.

3Sources. This data set is composed of 948 news articles, which are collected from BBC,
Reuters, and Guardian. We select a subset containing 169 stories reported in the above three
sources. The 169 stories have six different subject and therefore can be group into six classes.

BBC. The BBC data set contains 2225 documents about the sport news articles from the BBC
Sport website. These documents are described by 2–4 views and categorized into five classes.

The detailed information of these data sets is shown in Table 2. The first four data sets are
complete multiview data sets. We generate different incomplete data sets under two incomplete
setting, which we introduce in next section. The last two data sets are naturally incomplete.

5.2 | Experiment setting

In this section, we will introduce our experimental setting for handmade incomplete data sets.
One‐complete setting. We randomly select one view as the complete view and the rest of the

views suffer incomplete ratio (IR) equally from 10% to 70%. In this way, we generate the
incomplete data sets under one‐complete setting.

Random incomplete setting. Under random incomplete setting, we randomly remove 10%,
20%, 30%, 40%, and 50% samples in each view, but each sample has at least one existing view.

Natural incomplete setting. Data sets 3Sources and BBC are natural incomplete. The missing
samples in each view are denoted as NaN.

5.3 | Compared algorithm

In this section, we list the compared algorithms as follows,

• Best single view (BSV): BSV method first fills the missing samples with the average of other
existing samples. Then gaussian affinity matrices are constructed on each view to perform
spectral clustering. The best performance is reported as BSV.

• Direct concatenation (Concate): Similar to BSV, Concate first fills the missing instance. Then
all features across views are concatenated into a single view representation. The clustering
results are obtained by performing K ‐means on the connected feature.

TABLE 2 Description of the benchmark multiview data set

Data set Sample View Cluster Feature dimension

orlRnSp 400 2 40 1024 288 – –

BUAA 1350 2 150 100 100 – –

3Sources 169 3 6 3560 3610 3068 –

BBC 2225 4 5 4659 4633 4665 4684
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• Incomplete multimodal visual data grouping (IMG).18 IMG proposes to use the latent re-
presentation to generate a complete graph, which establishes a connection between missing
data from different views.

• IMVC via weighted NMF with ℓ2,1 regularization (MIC).29 This paper first fills the missing
instances with average values of features and then learns a ℓ2,1 regularized latent subspace by
weighted NMF.

• Partial multiview clustering (PVC).17 Based on the NMF, this method integrates the common
and view‐specific representations in the latent space to form a unified representation.

• Incomplete multiview spectral clustering with adaptive graph learning (INMF‐AGL)36 in-
duces a coregularization term to learn the common representation, which integrates the
graph learning and spectral clustering.

• Doubly aligned incomplete multiview clustering (DAIMC).19 The proposed method first
aligns the samples into a common representation by semi‐NMF and then aligns the base
matrices with the help of ℓ2,1 regularized regression modal.

Note that PVC and IMG only work for two‐view data. Following work in Reference [19], we
evaluate PVC and IMG on all two‐view combinations and report the best results. MIC, IMSC‐
AGL, DAIMC, and our proposed method can be applied for arbitrary incomplete multiview
data. Then we use these methods as suggusted.

5.4 | Experimental results and analysis

We generated the incomplete data sets under various settings according to the introduction in
experiment setting. Therefore, we obtain the BUAA data set with one view that is complete and the
random missing orlRnSp data set. Data set 3Source and BBC are natural incomplete. The experi-
mental results of different data set at different settings are shown in Tables 3–6. We report five
metrics of accuracy (ACC), normalized mutual information (NMI), Purity, F‐score and precision to
compare the clustering performance. The best results are presented as bold numbers.

TABLE 3 The clustering performance of different methods on natural incomplete data set 3Source

Method ACC NMI Purity F‐score Precision

BSV 0.2716 0.0500 0.3101 0.2008 0.1933

Concate 0.3966 0.2176 0.4303 0.3114 0.3026

IMG 0.3510 0.2032 0.3675 0.2947 0.1961

MIC 0.4313 0.3601 0.4678 0.3273 0.2554

PVC 0.5859 0.4720 0.6326 0.5083 0.4924

IMSC‐AGL 0.8173 0.6678 0.8173 0.7122 0.6949

DAIMC 0.8125 0.6751 0.8125 0.6790 0.6924

Ours 0.8510 0.7073 0.8510 0.7440 0.7621

Note: Bold numbers denote the best results and the underlined numbers denote the second‐best results.
Abbreviations: ACC, accuracy; BSV, best single view; Concate, direct concatenation; DAIMC, doubly aligned incomplete
multiview clustering; IMG, Incomplete multimodal visual data grouping; INMF‐AGL, incomplete multiview spectral clustering
with adaptive graph learning; NMI, normalized mutual information.
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Tables 3 and 4 show the comparison of the data sets 3Source and BBC with other com-
parison algorithms under the natural incomplete setting with five evaluation metrics,
respectively.

It can be seen from the two tables that our proposed algorithm achieves the best results
under all metrics compared to other comparison algorithms. Our results outperform DAIMC
because the graphs we learn contain not only the consistency information in the consensus
representation but also the local structural information between samples. The latest IMVC
algorithms based on graph and matrix decomposition or subspace (our proposed method and
IMSC‐AGL) outperform those based on matrix decomposition alone, which illustrates the
importance of mining local information between samples for the clustering task.

Tables 5 and 6 show the comparative experimental results for BUAA and orlRnSp under
one‐complete and random incomplete settings, respectively. In the first one‐complete setting,
the two view data set BUAA suffers 10%–70% missing samples in one view with another view is
complete. Compared with other methods, our proposed method has the best performance no
matter under different evaluation criteria or different incomplete ratio. The ACC obtained by
our method exceeds the corresponding DAIMC results by 18.67%, 14.08%, 16.37%, 12.08%,
11.19%, 9.19%, and 7.11% from the deletion rate of 10%–70%, respectively. This illustrates the
effectiveness of the local structure extract between the consensus representation.

Under the random incomplete setting in Figure 7, our proposed method outperforms IMSC‐
AGL by 20%, 20%, 24%, 16.25%, and 9.25% in terms of ACC, respectively. Although IMSC‐AGL
combines subspace learning and consensus representation learning, the high‐dimensional re-
presentation could lead to inaccurate distance measurement. Our algorithm incorporates the
NMF and LGR, learning of consistent representation and acquisition of local structure in a
more low‐dimensional and compact feature space, which contributes to our excellent
performance.

To show the comparison between different methods more clearly, we draw the ACC of
different methods under different missing rates as a line graph, as shown in Figure 1. From this
picture, we can find that our method (red line) is always higher than the other methods and can
keep relatively stable as the incomplete ratio increases.

TABLE 4 The clustering performance of different methods on natural incomplete data set BBC

Method ACC NMI Purity F‐score Precision

BSV 0.2679 0.0184 0.2724 0.2511 0.2155

Concate 0.2710 0.0361 0.3065 0.2338 0.2262

IMG 0.3741 0.1852 0.3757 0.3430 0.2392

MIC 0.4951 0.3572 0.5183 0.4114 0.3145

PVC 0.6149 0.4272 0.6394 0.5181 0.4871

IMSC‐AGL 0.9020 0.7391 0.9020 0.8214 0.8178

DAIMC 0.8503 0.6785 0.8503 0.7311 0.7208

Ours 0.9267 0.7919 0.9267 0.8641 0.8601

Note: Bold numbers denote the best results and the underlined numbers denote the second‐best results.
Abbreviations: ACC, accuracy; BSV, best single view; Concate, direct concatenation; DAIMC, doubly aligned incomplete
multiview clustering; IMG, Incomplete multimodal visual data grouping; INMF‐AGL, Incomplete multiview spectral clustering
with adaptive graph learning; NMI, normalized mutual information.
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TABLE 5 The clustering performance on BUAA under one‐complete setting

IR Metric BSV Concate IMG MIC PVC IMSC‐AGL AGC‐IMC DAIMC Ours

10% ACC 0.2889 0.3570 0.3064 0.0193 0.2699 0.2607 0.4593 0.3585 0.5452

NMI 0.6438 0.6728 0.5622 0.2215 0.6253 0.6219 0.7329 0.6857 0.7770

Purity 0.3281 0.3733 0.3516 0.1170 0.2865 0.2800 0.4756 0.3822 0.5733

F‐score 0.1271 0.1663 0.0322 0.0132 0.0953 0.0930 0.2680 0.1869 0.3746

Precision 0.0925 0.1424 0.0168 0.0067 0.0802 0.0770 0.2472 0.1550 0.3504

20% ACC 0.2852 0.3333 0.2881 0.0193 0.2318 0.2541 0.4400 0.3222 0.4630

NMI 0.6419 0.6602 0.5355 0.2215 0.5936 0.6201 0.7267 0.6575 0.7372

Purity 0.3222 0.3578 0.3276 0.1170 0.2510 0.2763 0.4563 0.3504 0.4859

F‐score 0.1264 0.1394 0.0292 0.0132 0.0665 0.0896 0.2572 0.1417 0.2840

Precision 0.0917 0.1173 0.0152 0.0067 0.0497 0.0731 0.2394 0.1169 0.2642

30% ACC 0.2852 0.2844 0.2729 0.0193 0.2381 0.2548 0.4170 0.2985 0.4622

NMI 0.6419 0.6422 0.5168 0.2215 0.5945 0.6188 0.7152 0.6446 0.7287

Purity 0.3222 0.3163 0.3119 0.1170 0.2522 0.2733 0.4363 0.3252 0.4881

F‐score 0.1264 0.1096 0.0248 0.0132 0.0625 0.0880 0.2357 0.1166 0.2692

Precision 0.0917 0.0886 0.0129 0.0067 0.0483 0.0732 0.2225 0.0953 0.2484

40% ACC 0.3007 0.2763 0.2541 0.0193 0.2291 0.2474 0.4126 0.2970 0.4178

NMI 0.6509 0.6320 0.5039 0.2215 0.5796 0.6146 0.7082 0.6450 0.7110

Purity 0.3415 0.3007 0.2927 0.1170 0.2440 0.2667 0.4259 0.3230 0.4348

F‐score 0.1365 0.1024 0.0247 0.0132 0.0477 0.0826 0.2219 0.1223 0.2380

Precision 0.1008 0.0817 0.0128 0.0067 0.0341 0.0681 0.2107 0.0964 0.2203

50% ACC 0.2852 0.2763 0.2347 0.0193 0.2088 0.2474 0.4074 0.3111 0.4230

NMI 0.6419 0.6268 0.4804 0.2215 0.5778 0.6128 0.7077 0.6511 0.7169

Purity 0.3222 0.2948 0.2685 0.1170 0.2221 0.2637 0.4222 0.3348 0.4452

F‐score 0.1264 0.0973 0.0232 0.0132 0.0436 0.0840 0.2238 0.1342 0.2413

Precision 0.0917 0.0735 0.0121 0.0067 0.0314 0.0696 0.2118 0.1048 0.2235

60% ACC 0.2852 0.2719 0.2304 0.0193 0.1971 0.2467 0.3904 0.3244 0.4163

NMI 0.6419 0.6256 0.4808 0.2215 0.5500 0.6153 0.6982 0.6529 0.7059

Purity 0.3222 0.2919 0.2632 0.1170 0.2078 0.2667 0.4067 0.3474 0.4385

F‐score 0.1264 0.0971 0.0231 0.0132 0.0300 0.0837 0.2040 0.1369 0.2187

Precision 0.0917 0.0737 0.0120 0.0067 0.0199 0.0707 0.1890 0.1063 0.2004

70% ACC 0.2889 0.2615 0.1996 0.0193 0.1699 0.2452 0.3830 0.3311 0.4022

NMI 0.6438 0.6146 0.4661 0.2215 0.5016 0.6122 0.6984 0.6653 0.7050

Purity 0.3281 0.2830 0.2344 0.1170 0.1836 0.2622 0.4030 0.3504 0.4244

F‐score 0.1271 0.0940 0.0214 0.0132 0.0216 0.0806 0.2025 0.1596 0.2165

(Continues)
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TABLE 5 (Continued)

IR Metric BSV Concate IMG MIC PVC IMSC‐AGL AGC‐IMC DAIMC Ours

Precision 0.0925 0.0707 0.0111 0.0067 0.0125 0.0674 0.1924 0.1275 0.2015

Note: Bold numbers denote the best results.

Abbreviations: ACC, accuracy; BSV, best single view; Concate, direct concatenation; DAIMC, doubly aligned incomplete
multiview clustering; IMG, Incomplete multimodal visual data grouping; INMF‐AGL, incomplete multiview spectral clustering
with adaptive graph learning; NMI, normalized mutual information.

TABLE 6 The clustering performan on orlRnSp under thet random incomplete setting

IR Metric BSV Concate IMG MIC PVC IMSC‐AGL AGC‐IMC DAIMC Ours

10% ACC 0.2625 0.4675 0.4853 0.5535 0.5091 0.5150 0.6625 0.6675 0.715

NMI 0.4972 0.6692 0.6885 0.7212 0.7004 0.7103 0.806 0.8162 0.8478

Purity 0.2925 0.5325 0.555 0.581 0.5466 0.5475 0.6900 0.7050 0.755

F‐score 0.0918 0.2261 0.1783 0.3435 0.3193 0.3688 0.5468 0.5476 0.5926

Precision 0.0535 0.1557 0.108 0.2794 0.2628 0.3449 0.5225 0.5052 0.5657

20% ACC 0.2325 0.4100 0.4348 0.4680 0.4616 0.4925 0.5800 0.6425 0.6925

NMI 0.4438 0.6160 0.6275 0.6496 0.6449 0.6824 0.7632 0.7920 0.8423

Purity 0.2600 0.4550 0.496 0.5075 0.4978 0.5200 0.6275 0.6750 0.7375

F‐score 0.0719 0.1901 0.1210 0.2007 0.1942 0.3240 0.4611 0.5081 0.5862

Precision 0.0433 0.1388 0.0694 0.1384 0.1346 0.2995 0.4254 0.4547 0.5373

30% ACC 0.2425 0.4000 0.3820 0.3255 0.4061 0.4575 0.5575 0.6125 0.6975

NMI 0.4621 0.5911 0.5514 0.5090 0.5787 0.6569 0.7184 0.7644 0.8259

Purity 0.2600 0.4350 0.4330 0.3515 0.4380 0.4875 0.5825 0.6425 0.7375

F‐score 0.0852 0.1793 0.0778 0.0974 0.1133 0.2891 0.4038 0.4508 0.5783

Precision 0.0742 0.1354 0.0426 0.0631 0.0689 0.2630 0.3751 0.3947 0.5301

40% ACC 0.2425 0.3475 0.3343 0.2720 0.3505 0.3775 0.4125 0.4925 0.5400

NMI 0.4824 0.5764 0.4886 0.4917 0.5220 0.5862 0.6279 0.6912 0.7396

Purity 0.2600 0.3875 0.3678 0.2935 0.3790 0.3900 0.4450 0.5350 0.5925

F‐score 0.0897 0.1602 0.0614 0.1024 0.0742 0.1929 0.2423 0.3218 0.3825

Precision 0.0806 0.1173 0.0330 0.0777 0.0420 0.1791 0.2282 0.2799 0.3448

50% ACC 0.2650 0.3550 0.1285 0.2930 0.3533 0.3175 0.4075 0.3900 0.4100

NMI 0.5001 0.576 0.2714 0.5214 0.5988 0.5542 0.6372 0.6228 0.6408

Purity 0.2800 0.3850 0.1510 0.3110 0.3863 0.3375 0.4425 0.4275 0.4575

F‐score 0.0948 0.1541 0.0454 0.1257 0.1895 0.1498 0.2370 0.2237 0.2472

Precision 0.0897 0.1115 0.0250 0.1023 0.1650 0.1380 0.2227 0.1969 0.2361

Note: The bold number demotes the best result.

Abbreviations: ACC, accuracy; BSV, best single view; Concate, direct concatenation; DAIMC, doubly aligned incomplete
multiview clustering; IMG, Incomplete multimodal visual data grouping; INMF‐AGL, incomplete multiview spectral clustering
with adaptive graph learning; NMI, normalized mutual information.
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In summary, the above experimental results have well demonstrated the effectiveness of our
proposed method comparing to other state‐of‐the‐art methods. We attribute the superiority of
proposed algorithm as two aspects: (i) We induce the ℓ2,1 regularization term into traditional
NMF‐based IMVC approaches. This regularization not only ensures sparsity in various base
matrices but also performs feature selection in the original model. (ii) The constructed graph is
utilized for preserving the locality in the consensus representation while also encourages the
view‐consistency and degrades the intra‐view disagreements. These factors greatly promote the
clustering performance of our proposed method.

(A) (B)

FIGURE 1 The ACC performance variation with various incomplete ratio increasing on BUAA and
orlRnSp under One‐complete setting. ACC, accuracy [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 2 The convergence curves of the objective values on data set orlRnSp under random incomplete
setting [Color figure can be viewed at wileyonlinelibrary.com]
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5.5 | Convergence and parameter sensitivity

Convergence. Our algorithm is theoretically guaranteed to converge to a local minimum. The
examples of the evolution of the objective value on the experimental results are shown in
Figures 2, 3, and 4. Figure 2 shows the convergence visualization of the natural incomplete data
sets 3Source and BBC. Figures 3 and 4 are the curves of objective value under one‐complete
setting and random incomplete setting. In the above experiments, we observe that the objective

(A) (B) (C) (D)

FIGURE 3 The convergence curves of the objective values on data set BUAA under One‐incomplete setting
[Color figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C) (D)

FIGURE 4 The convergence curves of the objective values on data set orlRnSp under random incomplete
setting [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 5 The sensitivity of purity on natural incomplete data set 3Source and BBC [Color figure can be
viewed at wileyonlinelibrary.com]
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value of our algorithm does monotonically decrease at each iteration and that it usually con-
verges in less than 50 iterations. These results clearly verifies our proposed algorithm's
convergence.

Sensitivity. In addition, we analyze the sensitivity of the clustering performance to the hyper
parameters α and λ. Parameters are chosen in the range of 10−4 to 104 in steps of 102. We use
three different evaluation metrics, ACC NMI and purity, in three different settings to de-
monstrate the effect of parameter variation on clustering performance. Figure 5 is the sensi-
tivity of hyper‐parameters on natural incomplete data set 3Source and BBC in terms of purity.

Figures 6 and 7 show the variety of clustering performance of the data set BUAA and
orlRnSp under one‐complete and random incomplete settings for all parameter combinations.

From these observations, we can find that the performance of BUAA and orlRnSp can
maintain relatively stable with the change of parameters at some missing ratio. And it shows a
trend of obtaining the optimal performance between the chosen range of parameters α and λ.
However, the natural incomplete data sets 3Source and BBC do not display a clear pattern in
their sensitivity bar chart.

6 | CONCLUSION

In this article, we propose a novel partial no‐negative matrix factorization to handle IMVC. We
incorporate NMF and local graph regularisation into a unified framework, whereas two processes
can negotiate with each other serving for learning task. Moreover, we add the base coefficient
regression ℓ2,1‐norm regularization term to constraint the various base matrices among views. This

(A) (B) (C) (D)

FIGURE 6 The NMI sensitivity on data set BUAA under One‐complete setting. NMI, normalized mutual
information [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C) (D)

FIGURE 7 The ACC sensitivity on data set orlRnSp under random incomplete setting. ACC, accuracy
[Color figure can be viewed at wileyonlinelibrary.com]
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term is here introduced to constraint sparseness in rows. The final learned graph not only considers
the incomplete data features for the clustering tasks but also ensures locality among all views. In
the future, we will explore to IMVC with more advanced consideration.
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