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Abstract: The conditioning theory of the ./# £ -weighted least squares and .# &-weighted pseudoin-
verse problems is explored in this article. We begin by introducing three types of condition numbers
for the /4 #-weighted pseudoinverse problem: normwise, mixed, and componentwise, along with
their explicit expressions. Utilizing the derivative of the /# Z-weighted pseudoinverse problem,
we then provide explicit condition number expressions for the solution of the ./# #-weighted least
squares problem. To ensure reliable estimation of these condition numbers, we employ the small-
sample statistical condition estimation method for all three algorithms. The article concludes with
numerical examples that highlight the results obtained.
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1. Introduction

The study of generalized inverses of matrices has been a very important research field
since the middle of last century and remains one of the most active research branches in the
world [1-3]. Generalized inverses, including the weighted pseudoinverse, have numerous
applications in various fields, such as control, networks, statistics, and econometrics [4-7].
The # Z-weighted pseudoinverse of m x n matrix # with the entries of two weight
matrices # and & (with order s x m and [ x n, respectively) is defined as

Hygy = (In— (29) ) (wx) (1)
where (/% )" denotes the Moore-Penrose inverse of /K and P = I,, — (MK ) M K . The
M Z-weighted pseudoinverse [3] originated from the .# #-weighted least squares problem
(M L-WLS), which is stated as follows:

mingngwith S ={x:||#x —h| 4« is minimum }, ()
xXe
where || - || and || - ||« are the ellipsoidal seminorms
Ixl% = x" 2 ex, |7 = 1T atan,
with h € R" . The # Z-WLS exists and has a unique solution:

xX=H, h+ P (In — (39")+$9")z for some vector z, 3)
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<

99(114 - (3@)*3@) =0

if and only if rank(B) = n, with B = ( > . In this case it can be shown [3] that

The ./ #-weighted pseudoinverse %7, ., [8] is helpful in solving . %-WLS problems [2,9],
which is a generalization of the equality constraint least squares problem and has been
widely explored in the literature (see, e.g., [9-12]). Eldén [9] studied perturbation theory for
this problem, whereas Cox et al. [12] retrieved the upper perturbation bound and provided
the normwise condition number. Li and Wang [13] presented structured and unstructured
partial normwise condition numbers, whereas Diao [14] provided partial mixed and com-
ponentwise condition numbers for this problem. Until today, the condition numbers for
the /4 #-WLS problem were not yet explored. Motivated by this and considering their
significance in ELS research, we present explicit representations of the normwise, mixed,
and componentwise condition numbers for the .# Z-WLS problem, as well as statistical
estimation.

A large number of articles and monographs have appeared during the last two decades
in the literature dealing with the . %-weighted pseudoinverse %%, ., [1,3,8]. The ./ %-
weighted pseudoinverse %, ., converts to the K-weighted pseudoinverse %, [3] when

M = I, the generalized inverse %; [15] when & has a full row rank and .# = I, and the
Moore-Penrose inverse #*t [16] when both # = I, and & = I. Wei and Zhang [8] dis-
cussed the structure and uniqueness of the . %-weighted pseudoinverse %7, .,. Elden [3]
devised the algorithm for #7,.,. Wei [17] considered the #{, expression using GSVD.
Gulliksson et al. [18] proposed a perturbation equation for %7,. Galba et al. [4] proposed
iterative methods for calculating %, ., but they may not be appropriate for time-varying
applications. Recurrent neural networks (RNNs) [2,6,7] are commonly used to calculate
time-varying %, ., solutions. Recently, Mahvish et al. [19,20] presented condition num-
bers and statistical estimates for the % -weighted pseudoinverse %, and the generalized

inverse %;

A fundamental idea in numerical analysis is the condition number, which expresses
how sensitive a function’s output is to small variations in its input. It is used to predict the
worst-case sensitivity of how errors in input data can affect the results of computations.
Various condition numbers are available that consider various aspects of the input and
output data. The normwise condition number [21] disregards the scaling structure of both
the input and output data. On the other hand, the mixed and componentwise [22] condition
numbers consider the scaling structure of the data. The mixed condition numbers employ
componentwise error analysis for the input data and normwise error analysis for the output
data. This means that the errors in the input data are estimated componentwise, while the
errors in the output data are estimated using a normwise approach. The componentwise
condition numbers, on the other hand, employ componentwise error analysis for both the
input and output data. This means that the errors in both the input and output data are
estimated componentwise. The condition numbers of the matrix %7, .,, when associated
with the two weight matrices /# and Z, and its estimation have not been investigated until
now. Nonetheless, it is crucial to delve into some generalized findings that encapsulate
other pre-existing results in the scientific literature.

The article is organized as follows: The normwise, mixed, and componentwise condi-
tion numbers for %, ., are discussed in Section 3, and the condition number expressions
for the 4 <Z-WLS solution are obtained in Section 4. In Section 2, preliminaries and ba-
sic properties are summarized, which help in understanding the results presented in the
paper. A highly reliable statistical estimate of the condition numbers is obtained using
the small-sample statistical condition estimation (SSCE) method [23] in Section 5. A few
numerical examples are also included in Section 5 to illustrate the results that were attained.
The efficiency of the estimators is illustrated by these examples, which also show the
distinction between the normwise condition numbers and the mixed and componentwise
condition numbers.
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Throughout this article, R"*" denotes the set of real m x n matrices. For a matrix
X € R™, XT is the transpose of X, rank(X) denotes the rank of X, || X||, is the spectral
norm of X, and || X||r is the Frobenius norm of X. For a vector ¥, ||x||« is its co-norm, and
|Ix||2 the 2-norm. The notation |X| is a matrix whose components are the absolute values of
the corresponding components of X.

2. Preliminaries

In this part, we will present several definitions and key findings that will be utilized
in the following sections. The entry-wise division [24] between the vectors u,v € R™ is
defined as

% = diag(vt)u, 4)

where diag(vi) is diagonal with diagonal elements vf, ey v%. Here, for a number s € R, st

is defined by

71 .
. s7, ifs #£0,
1, ifs =0.

It is obvious that % has components (%)l = viiui. Similarly, for U = (u;j) € R™*", V =
(vij) € R™M, Y is defined as follows:

We describe the relative distance between u and v using the entry-wise division as

u—mo

d(w0) = || == | = max {fofllu ~ o]}

In other words, we take into account the absolute distance at zero components and
the relative distance at nonzero components.

To establish the definitions of normwise, mixed and componentwise condition num-
bers, it is necessary to also determine the set B°(u,e) = {w € R™| |w; —u;| < elu;],
i=1,---,m}and B(u,e) = {w € R" | ||lw—ul|» < ¢l|lu|2}.

To define the normwise, mixed, and componentwise condition numbers, we consider
the following definitions:

Definition 1 ([24]). Assume that x : RP — RY is a continuous mapping described on an open
set Dom(x) C R? and u € Dom(x), u # 0 such that x(u) # 0.
(i) The normwise condition number of x at u is stated as

o e = 2l /o — ulz
) = tim sup (AR )

e=0 weB(ue) HuHZ
w#u

(ii) The mixed condition number of x at u is stated as

Ix(w) = x ()]l 1

S P (] N o
w#u

(iif) The componentwise condition number of x at u is stated as
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— i
c(x,u) ) w:BljaS) (w,u)
w#u

Using the Fréchet derivative, the next lemma provides explicit expressions for these
three condition numbers.

Lemma 1 ([24]). Assuming the same specifications as in Definition 1, if x is Fréchet differentiable
at u, then we obtain

— [ox)ll2[[]l>

— lox )| fuflloo (1) |
1x(w)ll2

ot lulles _ || exiu
mixu) = WGl e u) = || B0

n(x,u)

7
[e9)

Here, 6 (u) represents the Fréchet derivative of x at point u.
In order to derive explicit formulas for the previously mentioned condition numbers,

we require certain properties of the Kronecker product, denoted as [25], between matrices
A and B. Here, the operator 'vec’ is defined as

T
vec(A) = [a{,...,aﬂ € R™,

for A = [ay,...,a,] € R™" with a; € R” and the Kronecker product between A =
(al-]-) € R"*" and B € RP*X4 defined as A ® B = [ai].B] c Rmp*nq.

vec(AXB) = (BT®A)VeC(X), (5)
vec(AT) = ILunvec(A), (6)
[A®@Blla = [|All2[|Bll2, )
(A®B)" = (AT®B"), (8)

Here, the matrix X should have an appropriate dimension. Moreover, I, € R™"*™"
is the vec-permutation matrix, and its definition is based on the dimensions m and n.

Moving forward, we provide two useful lemmas. These will help in the calculation of
condition numbers as well as in determining their upper bounds.

Lemma 2 ([26], P. 174, Theorem 5). Let S be an open subset of R"*1 , and let x : S — R™*P
be a matrix function defined and k > 1 times (continuously) differentiable on S. If rank(x (X)) is
constant on S, then )(+ 1§ — RP*™ is k times (continuously) differentiable on S, and

T T
axt = —xtoxat+xTxT oxT (I — xxh) + (L, — xTex"x" " ©)

Lemma 3 ([16]). For any matrices W, B, C, G, Z and S that have dimensions such that
[W® B+ (C® G)I]vec(Z),

[W® B+ (C® G)I]vec(Z)
S 7
BZWTand GzTCT,

are well-defined, we have

W B+ (C @ G vec(|Z])]|, < ||vec(|BIIZIIWIT +1G11ZITIC|T)]| _
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an

vec(|B|Z|[W|" +|GI1Z|"|C|T)
S|

d
H |[W® B+ (C® G)IT|vec(|Z]) H _
S| o

‘ [e9)

3. Condition Numbers for .# Z-Weighted Pseudoinverse

To derive the explicit expression of the condition numbers of #,.,, we define the
mapping ¢ : Rmn-tsmtln _y pnm by
$(w) = vee(Xys)- (10)

Here, w = (vec()T,vec(Z)T,vec(H)T)T, sw = (vec(5.4)T,vec(6Z£)T,vec(6H)T)T,
and for a matrix A = (a;j), || Almax = [[vec(A) |l = max|a;|.
i,j

The definitions of the normwise, mixed, and componentwise condition numbers for
K, ., are given below, following [27] and using Definition 1.

AR AL ) Fxt
nt(, %, %) = lim sup X +05) a7 — Tzl | Eazle, (11)
0057 5t |p<ella,z, 7)|p  WOH, 8L X[/ [ M, £, H]||F

K +OK T —%+ 1
wt(, 2, %) =tim  sup WE T g = Hygman ,
SHOH(V%/%HmaxSS H*%/%gnmax d(w + dw, w)

‘|§y/g‘|max§€
6.5/ H [|max<e

(12)

1
+ .
(M, &, K) :=lim sup
€0 5,00t < (W + 0, W)
H(Sg/gumaxge
H&%/%Hmaxfs

(13)

| (H+0H) o — Ko
.'.
T

max

By applying the operator vec and the spectral, Frobenius, and Max norms, we redefine
the previously mentioned definitions accordingly.

vec(dM )
vec(6%)
n+(ﬂ, 3,%) -— lim sup ||V€C((¢% + 5'%)%3 — '%.1-%3)”2/ VBC((S(%) 2, (14)
£—0 vec(.40) vec(.1t) [vec(F 7, o )l2 Vec(;g)
vec(6) || <¢|| vee() ZZEE %g
vec(6F) |||, vec(Z) |||, 2
mt (M, %, H) :=lim sup Ivee((# + 5‘%)1;%3 _ %j%y) o L (15)
€20 |[vec(0.42) /vec( ) o<t [vec(F o) llo d(w + dw, w)
|[vec(8Z)/vec(Z) || <e
|[vec(8F) /vec(F )|l <e
H+0HK), o, — XY
N, %, %) := lim sup ! vee((# + ){r%g ) (16)
e300 vec(0.0) /vec(t)]|oo<e d(w + dw, w) vec(E y, ) o

|[vec(8Z)/vec(Z)||w<e
|[vec(8F) /vec(F )|l <e

The expression for the Fréchet derivative of ¢ at w is given below.

Lemma 4. Suppose that ¢ is a continous mapping. Then it is Fréchet differentiable at w and its
Fréchet derivative is:
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z(tt) = (1-H(MHx)" M) @ R) + (L Hlyo)" L(MH)T) © @7 H ) Lo
2(ZL) = ~((Hiye) @ (2P)") — (ZH )" @ @1,
Z(H) = ~(Hiyz)" © Hiyer) + (LK) Z(MH) M) @ @) T (17)

ot = (22 (z2) = (22)(22)!, R'=1-2(2P) L) (Mx). (18)
Proof. By differentiating both sides of (1), we acquire
0(Hyz) = S(I—(2P)' L) (wx) ). (19)
Considering the facts
(22)" = 2(22)T, (20)
and
P(1— (2P 2P =0, (21)
which are from [9] Theorem 2.1, Lemma 2, and
HP(LP) =x(2P) =0. (22)
From (19) and using (9) and (20), we have
S(HY, ) =01 - P(LP) LY MK M) = 5T M+ (MFN Sl — 5(P(LPV L (M) M) by (20)
=(I-PZPVDVo(MFN t + (1 - P(LP) LY MF) 6l — 5P (L PV L (M H)
— PSPV L(MH) ol — P(LP) 5L (TN M
= (I-P(LP) L)~ (MH) S(MH) (M) + () (TN Sl H)T (I — (MK (MF))
+ (1= () ()TN () ()l + (1 — P(LP)V LY T 5.
— PPV L(MH) M+ P[(2P) 6(2P)(2P) — (22 (2P 8(2P) (1 - (2P)(ZP))
—(I— (22 (z2)6(22) (22) (2P)\NL(MH) Ml — P(ZP) 5L (M) M by (9)
Using (20) and the result (I — #(ZP)'Z) (I — (M K) (M K)) = P (I — (ZP) 2 P),
the above equation can be rewritten as
— P(LP) LY MK S (MK (MK s+ P(1— (2P 2PV (MH)T (M H) (MK
(2P (2 P) (M H) (M) ()T (1 — (M) (MH) )l — (2P 62 (M)
[— (P L)1 — (M) MFNFP L (TNl + (1 —P(LP) LY M F) 500
+(z2P)V sz (2P LMK — (2P (2P 5(2P) (1 (2P (2PVNL (M) Ml
— 21— (22 22)8(2P2) (2P (2P L(MH) M. by (20)

S(HYyo) =

—(I
+ (-
=
(

Furthermore, given that (A %) (M X)" = 1, (20), and
KPP =x(zP)t =0,

we can simplify the above equation as considering (21) and (22), we have
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—(I-2(2P) LY TN s FH (TNt — (1 — P(LPV LY TN 6T (TNl + (1 — P(L PV L) (M ) 5.0
—(2P)Voz(uH) M+ (2P 6LP(LP) L(MH) M+ (1 (LPV LNt H) MsH (L PV (M H)
— (22 (2P PToLT(1 - (2P)(2P)VNL(MH) Mt — (2P (2P 6PTLT (I~ (2P ZPVNL(MF) . (23)

Using (18) and (1) in (23), we obtain

(I—FH (MK ) — R M6 (1 — (LP) LY (M F)
— (P oxR M — (2P (PPN LTL (1 — (2P L) (M FH) M
Y (2P oHT T (mx) T2 (1 - (2 P) L) M F)
(22 (2 HTouT(mw) LTL(1 - (2P L) MH) M
=61 - (ux) )% okHY, o, — (2P 62K, , — QLT PHT,,
+atoxT (LN 2H Yy + T HTSMT (L (M FNN 2 HY, . (24)

Employing the 'vec’ operation on both sides of (24) and taking into account (5) and
(6), we obtain

vec(6x Y, o) = (1 — H(H) )T @ RV vec(otl) + (LHY, )T L (M) @ @' HT)vec(s.4T)

(Hhy) ' @ (2P vec(82) — (L H o) © @ )vec(6LT) — (Hiyy)" © Hiyo)vec(6K)
+ (LI, )L (MF) ) ® @Y )vec(6HT) by (5)
= (I =F () )" @ R) + (LHYyo) L (MH)) @ Q" H ) s]vec(s.)

()" @ (ZP)) + (ZHlyz)" © )Ny ]vec(62)
(H )" ®55//%3) (LH o) L(MH) M) © @ )Lyn]vec(5F) by (6)

= (
(
(
[
[

(- M) & RY) + (L) L (MH)) © G HT) e,
—((Hh) @ (2PN~ (LH o) @ @)y, —(Hhyo)T @ Hlys)
(LI ) L(MI) M) @ Q)T

vec(d.M)
X lvec(&?)].

vec(0F)

That is,
S(vec(Hlye)) = |2(ll), Z(2), Z(H) 6.

The definition of Fréchet derivative yields the expected results. O
Remark 1. Assuming # = I and the Fréchet derivative of ¢ at w might be described as follows:
0p(w) = [2(£), (%)),

where

N

() =0
(£)=-((FxY)" o (22)") - (x5 © a1y,
(H) = —((FHH)T @ HL) + (LK) 2HT) @ @)y

N N
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nt(u,z, %)

whereas the latter is simply the results of ([19], Lemma 4), which allows us to retrieve the K-
weighted pseudoinverse £3, [19] condition numbers. The K-weighted pseudoinverse £, of [19]
uses a notation different from this paper (¥ and & are interchanged).

Remark 2. Considering M and & as identity matrices, we obtain
Z(tt) =0, Z(£) =0, Z(x) = [~(H) @ x") + (XH") " ® (I - X' X)) Myun],

which yields the outcome in [16], Lemma 10, from which the condition numbers for the Moore-
Penrose inverse [16] can be obtained.

Next, we provide the normwise, mixed, and componentwise condition numbers for
K1, -, which belong to the direct outcomes of Lemmas 1 and 4.

Theorem 1. The normwise, mixed and componentwise condition numbers for X, o, defined in
(11)—(13) are

vec(. M)

1[Z(2), 2(£), Z(F)]|l2|| | vee(Z)
vec(H)] ||,

(25)

4

.[.
n'(,<L,x) =
( ) [vec@ o)k

_ z(t)|vec(|#]) + |Z(Z)|vec(|Z]) + Z(F)vee(| ) | o
[vec(H ;)

|Z (M) |vec(|4]) +|Z(Z)|vec(|Z]) + Z(H)vec(|H])
vec(#, )

, (26)

mt (M, %L, H)

N, s, %) = (27)

[e9)

In the following corollary, we propose simply computable upper bounds to decrease
the cost of determining these condition numbers. Numerical investigations in Section 5
illustrate the reliability of these bounds.

Corollary 1. The upper bounds for the normwise, mixed and componentwise condition numbers
for &Y, are

<nt(m,z, %)
= |1—F () ||| 2+ (L Hy ) L (M) o]l @ FHT ||
+ + + +
H a2 ZP) 2 + |1 L F o |21 @7 ]2

M, L, ||
N g I 2 + (2 ) T2 () 0" || 142 e
||‘%/ﬂg||F

7

mt(, %, %) < ml(M,%, %)

\W\I%H(I*%(%%)Y%)Tl+l@*%T|lﬁ%Tl\g(g(%Iﬂfg)Tg(%%)*)\
R R e S 7
HE NN H | + | QNH N L H )" L (MK) M|

1 3y o lImax

max

M, &, 7) < ct(m, 2, )

\%*\I%I\(I*%(%%)*+/%)Tl++\@*‘%’T||/+%T|\g(ip%%yﬁfz’(/%«%)*)\
TPV ZE | + Q| L LT |
HH w o |FNF gy | +1QNFN(LF Yy )" L (M) M|

[Ty |

max
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Proof. Considering the known property |[[U, V]|2 < ||U]|2 + ||V]|2 for a pair of matrices,
U and V, and the Theorem 1, and (7), we obtain

n' (M, Z,H) < {II((I — H(MH) M) &R+ (LK) L (MH)) @ Q") a2

+ (Hh) T @ (22) = (2T ® @), |2

M, L, H|r
)7 © T~ (L) ()00 @] ¢ LT
ML

< {II((I ~ H(MH) M) @R 2+ |(ZHYy0) Z ()T @ @ HT |2

+(EY )T @ (2P o+ (2H, )T @ ),
Lz, <, *1||le

H(F)T © Tyl + (L H iy ) L (M) ) @*IIz} X T
||=%/ﬂg||l-“

- [||1—%<M>w||z||9z*||z+ (2 Yyy) 2 (3) L)l %

10 |20 (L) o + 12 s 2l 0" o
L, 2, %)l

+ 1 211y 7 12+ II(»?%J”g)Tg(%%)*/%IIzII@*Iz] .
||‘%//13HF

Again using Theorem 1, and Lemma 3, we have

m' (M, 2, %) = ||((I - H(MF)" )" @ R") + (LH o) Z(MH)") @ Q" H T ) |vec(|4])
+(Hia)" @ (ZP) — (L Hiya)" @ (@)y|vec(|Z])
H(Hye)T @ Hiyg — (ZHiyp) ' Z(MH) M) @ @ Thypn|vee(|F ) || oo/ | vee(H iy g )lleo
|

R ||(1 = H(MF) M) + | @ T || (L H o) L (M H)T))|
. +|(3=@2+||3||%;%3\T+|@+||%T||%%j%3\ .
HE | XN H | + QNN (LK )" L (M) M|

max

17y o | max

and

M, z,7) = |||((1- K (wF) 2)" @ R") + (ZH}yo) L (MH)") @ Q" H ) sm|vec(|.a])
+(Hye)T @ (ZP) — (2Hy o) @ QT |vee(|2])
I H ) © g — (ZHiye) L(MK) M) & Q' Ty |vec(|H|) /[vee(F iy o) lloo

|@+\’/%||(1—%(ﬂ%)+/%)T|+J@+%T||%T||§($%%3)T3(ﬂ%)+)|
. +|(5/”9):||3||%/%g|49|@ Hg+||%‘%/%$| .
HH Yy MFNFE Yyl + QN N(LH ) L (MK ) M
P

IN

max

O

4. Condition Numbers for .#Z Z-Weighted Least Squares Problem

First we define the .# #-WLS problem mapping ([, %, h]) : Rmn+smtintm _y
R" by

([, %, H,h) =x=(1-(LPV L) (M) Mh. (28)

Then, using Definition 1, we denote the normwise, mixed and componentwise condi-
tion numbers for the .# #-WLS problem as follows:
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n WS, 2, K, h) = w7 VS (¢, [, £, K, h]) = lim sup lox]l2
0 (5.0,62 30,60 | <ell Lt 2,31 €112

L WIS (g, 2,57, h) = m? L WIS (g, Lat, %, 50, 1]) = lim sup 12X

=0 ajca) €] X||oo”

5| <e| 2|
6 |<el |
(6| <el]

5x

AMLWS (i, 2, %, h) = ML WES (@, [ll, %, H,h]) = lim sup -
€0 suj<ela) €| X
loz|<el|

[0 |<e| #|
|6h|<e|h|

o)

Lemma 5. The mapping  is continuous, Fréchet differentiable at [M, <, K , h|, and
op([, 2, %, h)) = [S(M),S(Z),S(X), h],
where
S()= (TRt +(XTLTL (MK @ " H )14y,

5(2)=-("®(22)) - ("2 @ e,
() = ~(T @ HYyo) + (TLTL(MH) M) @ @) Ly, (29)
withr = (1 - F (MK )k, @ = (22 (FP) = (2P)T(2P)).
Proof. Differentiating both sides of (28), we obtain
ox = ([, %, %, h) = 8[(1 — (ZP) L) ()t )
From (20) and using (9), we obtain
ox = 8( ) M+ () Stth + (MK st Sh — 6(P(LP) Z(MH) k) by (20)
= (I - P(LPVLVs(mF) th + (1 — P(L P L) (M) S0 — 5P (P) 2 (M H)
— 2522V LM ) th — (2P 6L (MK — P (P L () W 5H
= (1- P(LP)' L)~ (UF) 5K (M H) + () (M) 5 H) (1 — () (M H))
(1= () (e x))o(Z)T () () lth + (1 — P(L P LY MH) 540N
— (P L (MF) h+ P[(2P) S(2P)(2P) — (22 (2P) 5(2P) (1 - (22)(2P))
—(I— (2P (22)s(2P) (2P (2P NL(MF) th — P(LPYV L (MF) th+ (1 — P(Z PV L) () 5.
Using (20), (28) and the result (I — P(ZP)' L) (I — (K (M K)) = P(1 - (LP) 2 P),
the above equation can be rewritten as
—(1—P(EP) LV MK S (M F) (M H) th+ P(1— (L P) 2PV (MK (0 H) (M) lh
+(1— (22 (2P) (U 5) (M3 S 5) (1 — (M) (M) ) Mh+ (1 - P(ZP) L) (M) o.M
—(I— (2P L)1 — (I MFH) L P L(MFN lth+ (ZP) 5L (L P L (MH) R
—(gPV LM ah — (22) (2P 5(2P)(1— (2PN LPYNL (MK AN
+ 21— (2P 2P)6(2P) T (2P (2P L (MH) Mth + (1 - P(ZP) L) (M) M.

Noting, by the fact (4K )(MK)t = I, (20), and

HP(LP) =H(2P)t =0,
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we can simplify the above equation by considering (21) and (22)

(I—P(ELPV LIS MH (MK e — (1 — P(LP) LYNMF) 6T (M F) R

(I—P( PV L TN sth — (PP 5L (MH) s+ (P 6P (FPV L (M H) M
(I (P LYNMK) M H (2P L (M) llh — (2P) (2P PToLT(I— (2P)(ZP))L (M) Mk
— (22 (2P 5PTLT(1 — (2P LPYNL (M) Mh + (1 — P(LP) L) (M H) M 5h. (30)

Considering (Z2)t(22)t" = (22)T(2%)) in (30), we obtain
RIS (1—F(MH) MV — R MSH (I — (LPV LY (M Tt h
—(zPVszRtun— (PN ( PPN 6LTL(1— (2P LY F) h
(P e\ s T (ux) " 2TL(1 - (2P L) () dih
(2P PV HTsuT(ux) LTL(1 - (2P L) (M H) Ah + RSN
= R6Mr — K, 0Hx — (2P oxx — 0T 6XTZx
+ @ oHT M (L (NN L3+ T H oM (L (M H)) L X+ H T, 0. (31)

After considering (5) and (6) and using the "vec” operation on both sides of (31),
we obtain

vec(0x) = (rT @ BV Yvec(6.tt) + (T LT L (H)) @ @' HT)vec(o.u™)
— (T @ (ZP)vec(02) — (xT2T @ @")vec(6ZT) — (xT @ H ) )vec(6K)
+(TLTL(MH) ) 2 @ )vec(6HT) + HY,,6n by (5)
=[(rTeo2" +("LT2(ux)) @ @"FH 1 Igy|vec(s.4)
— (" @ (@2)) + (LT @ aMI,]vec(62)
[T exly) — (TLTL (I M) @ Q) Tyy]vec(6H) + KT, ,0h by (6)

= (TN + ("LT2(ux)t) @ @' H ),

—((T@(22)) + ("2 @ e"Ly),
vec(d.4)

(T eH,,) — (TLTL(MH) M) @ @) Ly), K, o zzgg% : (32)

oh
That is,
ox = [S(),8(£),S(H), HY, o )0w.
Hence, the required results can be obtained by using the definition of Fréchet

derivative. [

Remark 3. Assuming # and & as identity matrices and using (32), we obtain

o = | — (Toat) - (TH @ (- %*%))nmn),f] [Ve‘:{gi‘% >] .

It accomplishes the result stated in ([16] Lemma 11), from which the condition numbers of the
linear least squares solution [16] can be acquired.

Now, we give the normwise, mixed, and componentwise condition numbers for
M ZFL-WLS solution which are the immediate results of Lemma 1 and Lemma 4.
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Theorem 2. The normwise, mixed and componentwise condition numbers for M L-WLS problem
defined in (11)—(13) are

vec(M)

I(560),5(2), 52, Mz | vect )
LWL (g, 2, %,h) = " 2, (33)

[[x[|2
w20 5,50y WSO +1S(Z)vee 7)) + ST vecTD + 1Ty ey
ik BN ’
,

7S 4, 301y = SO IS el 2) + S el + gl |

The next corollary yields effortlessly computable bounds for .# #-WLS solution.
Numerical investigations in Section 5 confirm the reliability of these bounds.

Corollary 2. The upper bounds for the normwise, mixed and componentwise condition numbers
for M ZL-WLS solution are

nw?=WLS (i, 2, H , ) < n“PPer (M, &, K , )
= {IrIIzH@*IIzﬂL (2 (a5 Zx|2]| @ T |2

+xl2ll(22) )2 + |2l @712
L2, <, ,h||e
<l

7

+ x| H g ll2 + |27 (Z (2 7)) Zx||2]| @712 + |<%}w||z]

m L =WES (g, &, H ) < m"PPeT (M, L, K, )
(Rl ||r| + @ T ||| (2 () Z x|
. +|(9+@)+U$II9;I+|@*||3+THT=‘ZXI .
| H || F x| + |@||H || (L(MF)) Lx| + | H |||

a B9[S '
LWL (g, L, K, h) < PP (M, &, K, )
(Rl ||r| + @ T ||| | (2 (7)) Z x|
. +|($+9)+ITI$II9;I+IQ*IISZf\Fﬂ .
| AN F | Z x|+ || F || 4 (L(MF))” LX| + | Ky B
|x|

Here, we have a different version of the normwise condition number that does not
include the Kronecker products.

Theorem 3. The normwise condition number n#<—-WLS (M,ZL, F ) of the ML-WLS solution
is given by

1% 1132\, 2, %, bl

n LWL (g 2, % h) = i

, (36)



Axioms 2024, 13, 345

13 of 21

where

2 T
W = (14 53) (X)) T + (1213 + |17 2T 2 (e 50) 0 B)@t + | B

+ )26t + | T LTz (e w) et HTH et — 2%t (wH) T FT LT HG
120t 2T (z22) ! — 20t LT () wxt,,.

Proof. We find it difficult to simplify ¢ directly. Therefore, from (29), we consider 7" and

using |7 ||, = ||‘7/TH§ = maxl||WTy||§. If y is a unit vector in R”, then

‘WT]/

Iyll2=

n'reat’) - (ux)" 2Tzxe xat")
~M(zxe6t") - (xo (22))
7 (" (e 0) 2T 2x) @ @) — (x @ (Hhy)T)
I (H )"
7 (r @ %t vec(y) — () LT2x @ (@t HT)T)vec(y)
T (Zx @ 6 )vec(y) — (x @ (22)t T vec(y)
7 (" (e 5) 2T Zx) @ @' vec(y) — (x @ (Hlyy) ) vee(y)
L (*%j%g)Ty
[ I 'vec(2t yrT) — Tvec((@t % )Ty ()t 2T 2x)T)
—IT vec(@t y(2x)T) — Ivec((Z2)t yxT)

y (by(8))

- vec(@y(T () T £x)T) — Mvec((*, ) TyxT) (by (%))
L (Z )"y
[ I(vec(®t yrT) — vee(((@tHT)TyxT LT 2 (M 5 ))T))

~T(vec(@" y(£x)T) + vec(((2P) yx")T)) (by (6))

M(vec(@! y(aT(u5) 2T 2x)T) - vec(((Hly5) Tyx)T))
L (%;ﬂg)Ty
[ I vec(2t yrT — () 2T zxyTat xT))

T vec(@t y(2x)T + xyT (22)1)
M-tvec(@ y(uT () 2T2x)T — xyTHY,.,)
L (%j%g)Ty
[ vec(ryT@t — (wat yxTLT 2 (M H)))

—vec(Zxy" @ + (22) yaT) . (by@®)andIT ' =T11T) (37
vec(XT LTz () eyt @t — (%%, ) Tyx") (by(® ) @7)

L (*%}Lﬂg)Tl‘/

Then, we obtain
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T T
||WTyH§ = ||Vec(ryT<%+ —(xat yngTg(%%)+))||% + ||Vec(.§z}”xyT@Jr + (2Pt yxT)||%

+ |lvec(x™ LT L (a5 ) aty" @ — (o) TyxT) 3+ (| (Hyer) o113

= |y (@ — (e L2 (W)} + |2yt + (22) AT |}
+ T LT L () tyT @ — (o) TyaT IR+ (o) Ty 13

= |y 3+ |t L () G+ |2y @R+ (2 )t v
T LT () T @ |F+ || (o) TyxT 13+ ([ (o) T3
ot ) LT Lyt @t H Ty TR + 2t (xyT (2 P) 2 xyT @)
—2tr(xyT Y, T2 (M )y @)

= "Lz () Bl e yI3 + Bt vIE + | 2xlBlet y3

T T
+ 2z )yl + Ix" 2T 2 () w3 @yl + Il (F o er) T yI1Z + 1 (H ) Y13

—oyTat(wx) LT T He y+ 2Tt T 2T (2 )y
T
2T @ XTI (M H) MHT oy
2
= (1 13IB)Y () gy + (12313 + (K 2T 2 () |3y @y + (3 'y
T T

+rlsy" R Ry + | LT () )y @ T H @y

—oyTat(wx) LT T He y+ 2Tt T LT (2 )y

Tt T LT () ', Ly

2

= yT((l +|1%18) (Fhy ) Hly + 12513+ |17 2" 2 () a|3) @1

+IrRet Rt + ||x)2et + KT T () |Ret HTx @t

2t (ux) LTz TH e + 20 T LT (2 )

20t LT () xt!, g) Y.
Therefore, we have the desired result (36). [

5. Numerical Experiments

In this section, first we present reliable condition estimation algorithms for normwise,
mixed, and componentwise condition numbers using small sample statistical condition
estimation (SCE) method then we show the accuracy of the propose condition estimation
algorithms by numerical experiments. Kenny and Laub [23] provided small sample sta-
tistical condition estimation (SCE) as a reliable method to estimate condition numbers for
linear least squares problems [13,28,29], indefinite least squares problems [20,30] and total
least squares problems [31-33]. We proposed Algorithms A, B and C based on the SSCE
method [23] to estimate the normwise, mixed, and componentwise condition numbers of

%}% & and for the .4 Z-WLS solution.

Algorithm A (Small-sample statistical condition estimation method for the normwise

condition number of .# #-weighted pseudoinverse)

1. Generate matrices [5.01,6%1,01), [6M2,6%2,63), ..., [64y, 64, 6K,] with each

entry in A/(0,1) and orthonormalize the following matrix

vec(8.M1) vec(SMly) - vec(dy)
vec(6%1) vec(6%) -+ vec(d%y)
vec(6H1) vec(0H,) -+ vec(6FH,)
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to obtain |1, 1, . .., ;] by modified Gram-Schmidt orthogonalization process. Each
T7; can be converted into the corresponding matrices [0.#;, §%;, 6 K;] by applying the
unvec operation.

2. Let p = mn + sm + In. The Wallis factor approximate w;, and w, by
2
wpy x| ———— (38)
(p—3)
3. Fori=1,2,...,q, compute A; from (24)
_apts (T t N ot sep gt tsop ot ptsopT ooyt
Ni=ROMi(1—FK(MI) M) — Ky OKi K yyy — (LP)OLH gy — Q0L LKy
+atoxt T (LN 2HYy Yy + T H M (L (M 2 HY, ) (39)

where @' and %" are given in (18). Estimate the absolute condition vector by

2
7

+ Wy 2 2
it = %\/|A1| P+ A

-

Here, for any vector A = [Aq,...,A,]" € R, A2 = {|A1|z,..., |/\n|2} and \/|A| =
T

[\ /1A, A |} . Where the power operation is applied at each entry of y;,i =

1,2,...,kand \/|A] = ( |ai]-‘) with A = (a;/). Where the square operation is
applied to each entry of A;,i =1,2,...,q and the square root is also applied compo-
nentwise.

Estimate the normwise condition number (33) by

Necgll[ 4, 2, %) | e

1% 5|

nécg(M, L, H) = , (40)

F

where Nicg == a2/ |43+ [Mall3 + -+ [A]13 = sl

The corresponding SSCE method, which is from [23] and has been used in numerous
problems (see, for example, [27,32-34]), is required in order to estimate the mixed and
componentwise condition numbers for # 1, ..

Algorithm B (Small-sample statistical condition estimation method for the mixed and
componentwise condition numbers of .# Z-weighted pseudoinverse)

1.

N

Generate matrices [0.41,0%1,6F1], [0M2,6%2,6F,), . .., [6Mq,6%4,6F,] with each
entry in A/(0,1) and orthonormalize the following matrix

vec(8M1) vec(SMy) - vec(by)
vec(6%1) vec(6%) -+ vec(d%y)
vec(6H1) vec(0H,) --- vec(6H;)

to obtain [Tl, T, ..., Tq] by modified Gram-Schmidt orthogonalization process. Each
T7; can be converted into the corresponding matrices [0.4;,6%;, 6 %;] by applying the
unvec operation. Let [0.4;,0%;,0%;] be the matrix {MZ,XZ,X%} multiplied by
[M,<, K] componentwise.

Let p = mn + ms + In. Approximate wy, and wj by (38).

Fora =1,2,...,4, calculate A, by (39). Compute the absolute condition vector

w,
nhep = wz\/m% Mol t -t A
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4.  Estimate the mixed and componentwise condition estimations m}.,(.#, %, %) and
ct (M, %, H) as follows:

+
"sce

1

+ [nécglo +
mscg(ﬂ/gl«%):— CSCE(ﬂ/«gI%): W
MF

[vee( jy5)lleo”

(0]

In order to estimate the normwise, mixed, and componentwise condition numbers of the
M ZL-WLS problem, we provide Algorithm C based on the SSCE approach [23].

Algorithm C (Small-sample statistical condition estimation method for the condition num-
bers of ./# Z-weighted least squares problem)

1. Generate matrices [5%1, 0L, 0K, (3]’11], [5%2, 6L, 0%, (5h2], ey [(Sﬂt, 0L, 0Ky, (5]’111]
with entries in N'(0, 1), where I; € R™. To orthonormalize the below matrix

vec(0.ll1) vec(oMy) --- vec(OMy)

vec(6%)) vec(6Fp) -+ vec(6F)

vec(0H1) vec(d0H,) - vec(0Hi)
ohy Shy e Ohy

to obtain an orthonormal matrix [§1, 8y, ..., ¢, by using modified Gram-Schmidt
orthogonalization technique. Where ¢; can be converted into the corresponding
matrices [0.4;,0Z;, 0K, Ohi| by applying the unvec operation.

2. Leta = mn+sm+In+ m. Approximate w, and w; by using (38).

3. Forj=1,2,...,t compute y; from (31)

yj =R oM ir — Hy 0 Hix — (ZP) 6Lx — @'67] #x
+a'sHl (2 (MH)) Lx+ @ HToM] (L (MH)) Lx + Hy oy 0h

Using the approximations for w, and wy, estimate the absolute condition vector

ML —WLS Wt 2 2 2
Kabs :(Up\/|y1| +|]/2‘ +"'+|yt| .

4. Estimate the normwise condition estimation as follows:

K/ﬂSLWLSH H [%T/gT,%T/ hT} TH
2

abs

M L—WLS _ ‘

2
SCE :

%[]2

5. Compute the mixed condition estimation mgcp and componentwise condition estima-
tion cgcg as follows:

MF—WLS
abs

X

K

/%S’—WLSH
MSCE 1= =

abs

oo

K
s CSCE ‘=

[e9)

Next, we provide three individual examples. In the first, we compare our SCE-based es-
timates with the condition numbers of %j% - It also concludes how well Algorithms
A and B perform while developing very high estimations. The second one helps to
show the accuracy of statistical condition estimators of normwise, mixed, and compo-
nentwise condition numbers for the .# Z-WLS solution. The third one verifies the effec-
tiveness of over-estimation ratios by Algorithm C related to the condition numbers of the
M ZL-WLS solution.

Example 1. We constructed 200 matrices by repeatedly applying the data matrices &, M ,and &
below and varying the value of 6.
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2]
=
j=]

5>
o

o
N
o
o O
o O

cos 6
w=10 0 1

o
S =
o O

: c Rmxn, c Rsxml P = e Rlxn’
0—3

: : : S -4
cos 0 0 0 ... 0 10

00 ... 6

The results in Table 1 show that Algorithms A and B can reliably estimate the condition
numbers in the majority of instances. As stated in ([35], Chapter 15), an estimate of the condition
number that is correct to within a factor of 10 is usually suitable because it is the magnitude of an
error bound that is of interest rather than its precise value.

Table 1. The efficiency of statistical condition estimates by Algorithms A and B.

m,n,s,l

t t t t t t t
g Mg m my

+ +
"gcE n CScE c Cu

20,10, 5,15

1.1022e+01 2.7522e+01
2.2053e+01 3.2618e+01
3.1054e+01 4.2065e+01
3.1054e+01 4.2065e+01

5.7654e+02 3.1027e+00 5.3832e+00
7.1865e+02 2.3128e+00 3.4752e+00
2.6211.e+03 2.5201e+00 3.7032e+00
2.6211.e+03 2.5201e+00 3.7032e+00

5.2416e+01
2.3096e+01
3.1965e+02
3.1965e+02

4.2054e+00 5.4372e+00
2.5062e+00 3.6543e+00
2.7084e+00 3.8033e+00
2.7084e+00 3.8033e+00

6.2721e+01
3.6092e+01
4.0544e+02
4.0544e+02

m,n,s,l

t t t t t t t
ny Mg m my

"
CScE c

T
"sce n ct

60, 40, 30, 50

4.4034e+01 5.6652e+01
4.7901e+01 5.9084e+01
2.1642e+02 3.7611e+02
2.1642e+02 3.7611e+02

5.1977e+03 3.8402e+00 6.0328e+00
7.4710e+03 2.8033e+00 3.2228e+00
1.3179e+04 2.8764e+00 4.3502e+00
1.3179e+04 2.8764e+00 4.3502e+00

8.6047e+01
6.3722e+01
4.0644e+02
4.0644e+02

5.1054e+00 7.3590e+00
3.1560e+00 4.3805e+00
4.1232e+00 5.4653e+00
4.1232e+00 5.4653e+00

8.9076e+01
7.6943e+01
5.3772e+02
5.3772e+02

m,n,s,l

+ + + + t + + +
u Mscg m u CScE c

n u

m C.

"
"scg n

100, 60, 40, 80

1.6543e+02 2.4638e+02
1.2324e+02 2.3207e+02
2.5434e+02 3.2455e+02
2.5434e+02 3.2455e+02

3.0643e+04 4.3222e+00 6.1108e+00
4.2501e+04 3.6233e+00 5.2326e+00
6.5731e+04 3.2064e+00 4.5211e+00 5.7654e+02 4.8659e+00 5.7532e+00
6.5731e+04 3.2064e+00 4.5211e+00 5.7654e+02 4.8659e+00 5.7532e+00

4.0644e+02 5.7642e+00 7.4544e+00
2.5489e+02 5.3562e+00 6.6533e+00

5.3632e+02
3.6471e+02
6.5703e+02
6.5703e+02

m,n,s,l

t t

t t t t t
nSCE n ny

t t
Mscg m My CSCE c Cy

200, 100, 50, 150

ARUINRRWN | D [oRUeR0N | D [ofxoleNwN | D [ofxoiueNoly | D

2.0331e+02 4.2224e+02 7.1023e+04
2.2053e+02 3.2618e+02 7.4533e+04
4.1326e+02 6.7651e+02 9.2016e+04
4.1326e+02 6.7651e+02 9.2016e+04

4.7532e+00 7.0665e+00
4.1054e+00 6.2350e+00
3.6325e+00 5.3824e+00
3.6325e+00 5.3824e+00

3.2052e+03 6.7051e+00 7.8066e+00 4.6281e+03
1.2411e+03 6.0462e+00 7.1102e+00 2.7403e+03
4.5341e+03 5.1632e+00 6.5032e+00 7.2305e+03
4.53414e+035.1632e+00 6.5032e+00 7.2305e+03

Figure 1 demonstrates that Algorithms A and B are very efficient in estimating condition
numbers of X, . To evaluate the efficiency of the Algorithms A and B, we created 500 matrix
pairings and set m = 300, n = 150, s = 100, [ = 200 and q = 3 with fixed 0 = Z. In order to
determine the effectiveness of Algorithms A and B, we specify the following ratios:

t t t
;o —Isce ) _TMsce ) _ Csce
sT T TmT T e T T

Mixed estimation ratios
Componentwise estimation ratios

Normwise estimation ratios

1

05

b &t
W et

50 100 150 200 250 300 350 400 450 500 [
Test times

50 100 150 200 250 300 350 400 450 500
Test times

0
0 50 100 150 200 250 300 350 400 450 500 0
Test times

Figure 1. Efficiency of condition eliminators of Algorithms A and B.
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Example 2. The nonsymmetric Gaussian random Toeplitz matrix & is constructed using the
Matlab function toeplitz(c,r) using ¢ = randn(s,1) and r = randn(s, 1), where & = [%;,0].
Assume that Y € R™*" and U € R™ " are the random orthogonal matrices, and T is the diagonal
matrix with a certain condition number and positive elements on its diagonal. Following that, we
are given the matrices & and M as

Y

%:%%Z[O }YT, Z=ur-: . —=uru’,

where Y = n~Ydiag(n', (n — 1)1, ..., 1). The residual vector r = h — K x = M7 [ (1); ] and the
solution x = (1,22,...,n%)T with v € R™ " indicating any random vector with a certain norm

T
tmdhzu%%2[2]4.%;Z[gY:x
for each specified cond(#) = n' to check the performance of Algorithm C.

The mixed and componentwise condition numbers, rather than the normwise condition num-
ber, are more appropriate for describing the underlying conditioning of this M Z£-WLS problem,
considering the facts given in Table 2. Furthermore, we observed that condition estimates based on
SSCE may yield accurate results when executed by Algorithm C.

} . Here, we construct 200 random M £ -WLS problems

Table 2. The efficiency of statistical condition estimates by Algorithm C.

m,n,s,l n

ML~WLS ML —WLS upper ML —~WLS ML —WLS upper ML —~WLS  MFL—WLS upper
nSCE n n mSCE m m CSCE c c

30,20,10,15 1072

1.5301e+01 3.3711e+01 4.3502e+03 3.1081e+00 4.5121e+00 1.7609e+02 4.1428e+00 5.1213e+00 2.3461e+02
3.7103e+03 4.1046e+03 1.2353e+05 4.1311e+00 5.4115e+00 3.0554e+02 5.4401e+00 6.5041e+00 4.5530e+02
4.0511e+03 5.6105e+03 1.8619e+05 4.1781e+00 5.5733e+00 3.6102e+02 5.6505e+00 6.7504e+00 4.7082e+02
5.0171e+03 6.4115e+03 5.4632e+05 5.3161e+00 6.4132e+00 4.3011e+02 6.1865e+00 7.1805e+00 5.0122e+02
6.3304e+04 7.8651e+04 5.7011e+05 6.6701e+00 7.3101e+00 4.6750e+02 7.5311e+00 7.6541e+00 5.3443e+02

m,n,s,l n

MF—-WLS ML —WLS upper ML —-WLS ML —WLS  upper ML —~WLS ML —-WLS . upper
nSCE n n mSCE m m CSCE C c

90, 60,30,45 1072

4.0314e+01 5.1011e+01 5.0754e+03 3.1011e+00 4.1041e+00 6.3560e+02 4.1566e+00 5.1108e+00 9.8642e+02
1.1135e+03 3.1103e+03 3.1398e+05 3.3671e+00 4.5781e+00 1.4567e+03 4.1401e+00 5.0713e+00 3.5567e+03
4.5311e+03 5.7611e+03 3.5743e+05 3.4122e+00 4.7551e+00 1.6091e+03 4.4311e+00 5.7141e+00 3.8110e+03
6.1351e+03 7.3450e+03 6.5865e+05 4.0167e+00 5.3502e+00 2.4113e+03 5.1104e+00 6.0511e+00 4.5225e+03
3.6111e+04 4.7661e+04 6.8952e+05 4.6311e+00 5.6215e+00 2.7840e+03 5.3054e+00 6.4403e+00 4.8203e+03

m,n,s,l n

MF—-WLS ML —WLS upper MFL—-WLS . ML —WLS  upper ML —~WLS ML —-WLS . upper
nSCE n n mSCE m m CSCE C Cc

120, 80, 40,60 1072

3.3401e+01 4.5611e+01 7.1209e+03 1.7101e+00 3.8115e+00 8.3411e+02 3.6411e+00 4.7110e+00 9.7438e+03
1.7611e+03 1.1403e+03 6.3689e+05 1.4471e+00 1.5171e+00 3.4229e+03 1.3544e+00 3.4811e+00 6.0431e+03
3.4511e+03 5.0411e+03 6.7754e+05 1.6331e+00 1.7813e+00 3.9810e+03 3.5886e+00 4.7805e+00 6.4332e+03
5.1014e+03 6.1331e+03 8.2306e+05 1.8041e+00 1.8866e+00 5.4240e+03 4.0113e+00 5.1531e+00 7.3552e+03
1.7411e+04 3.3811e+04 8.6435e+05 3.7316e+00 4.8031e+00 5.6708e+03 4.1108e+00 5.8611e+00 7.6622e+03

m,n,s,l n

MF—-WLS ML —WLS upper MFL—-WLS . ML —WLS  upper ML —~WLS ML —-WLS . upper
nSCE n n mSCE m m CSCE C c

100
1071
150, 100, 50, 75 1072
1074
1077

3.1517e+01 4.3401e+01 9.0654e+03 1.5113e+00 3.6305e+00 4.7622e+03 3.1077e+00 4.1765e+00 5.1108e+03
1.6311e+03 1.1451e+03 8.6422e+05 1.1411e+00 1.4134e+00 6.3005e+03 1.1711e+00 3.3086e+00 8.5994e+03
3.0558e+03 4.7550e+03 8.8043e+05 1.4770e+00 1.6511e+00 6.9021e+03 3.1341e+00 4.5311e+00 8.7043e+03
5.0141e+03 5.8301e+03 9.4660e+05 1.0111e+00 1.7001e+00 8.2765e+03 3.7661e+00 5.0111e+00 9.0492e+03
1.5431e+04 3.0801e+04 9.7034e+05 3.1314e+00 4.6441e+00 8.8211e+03 4.1055e+00 5.7101e+00 9.8955e+03

The ratios between the exact condition numbers and their estimated values are listed here.

n/ﬂy—WLS m/ﬂE—WLS C/%ﬁ—WLS
_ _'SCE _ _"SCE _ _SCE

's = jaw—wis' 'm= L ao—wis' e = Luw—wis

In order to determine the effectiveness of Algorithm C, generate 500 random M ZL-WLS
problems with the assumptions that m = 200, n = 100, | = 150, and s = 50 and we used the
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parameter t = 2. Therefore, as seen in Figure 2, normwise condition estimation, vy, is not as
effective as mixed condition estimation, t.,, and componentwise condition estimation, r..

The efficiency of r, The efficiency of rr The efficiency of r.

*
Mixed estimation ratios
Componentwise estimation ratios

0 5 100 150 200 250 300 350 400 450 500 0 5 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Test times Test times Test times

Figure 2. Efficiency of condition eliminators of Algorithm C.

Example 3. Consider the random orthogonal matrices: U € R, V € RIXI y e Rmxm,
Z € R"™™" then the matrices # , M, and Z are provided by

_1
H=Y"Ny2Z", Z=VALZ', u=UN4Y",

with appropriate sizes, where Agy € R™ ", A 4 € RS*™ and Ag € R*" are diagonal matrices
with diagonal elements distributed exponentially from K;f to 1. Furthermore, we define x =

(1, 22, ..., nz) T as the solution x and h = r + %j%gx, where v is the random vector of the 2-norm.
For the perturbations, we generate them as

A =e1x (EOK), A =e1x (FOM), ANF=e1x(GOZL), Ah=¢ x(gOh),

In this example, the componentwise product of two matrices is indicated by ©, and the random
matrices E, F, G, and g have uniformly distributed components in the open interval (—1,1) and
g =10"7.

To evaluate the accuracy of the estimators, we define the overestimation ratios.

ML —-WLS € ML —WLS € ML —WLS €
over .__ 'SCE 1 over . SCE 1 over SCE 1

r = > 1=, 1=
’ loxl2/llxfl2 = ™ 1xloo/lI%lleo € 1637 ][0

To check the performance of Algorithm C, we constructed 500 random M £-WLS problems
with m = 350, s = 50, I = 250, and n = 150, and we used the parameter t = 3 and outputs

ngﬂcg —WLs) mé”c“g “WES and cé”C“E(Z ~WLS of Algorithm C. Figure 3 illustrates that the mixed condi-
over

tion estimation, roy¢", and the componentwise condition estimation, ro%", are more efficient when

compared to the normwise condition estimation, v5°°". However, it is important to note that the
latter tends to significantly overestimate the true relative normuwise error.

The efficienc

The efficiency of rix” The efficiency of 2"

Componentmwise over-estimation ratios

B +
3 P +
e 4 . 3 ,.:;w B o 2 4 ;1 *‘; s }:Vu N e ++‘
L e n AN R e ST T T e L
g, B PR - P h: e,
4 . e s h ata ]
Bl B AL A AL TN ey, Lt AR R N
FeE s ¥ vl VIR hlv DA
W AT Sl R e A e R o ST
* * N Tttt AT B e P EL s
W M [kt U A e e R e e e e
. W . B A AR T et e e T
0 3
0 s 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 5 100 150 20 250 30 350 400 450 500
Test times. Test times. Test times.

Figure 3. Efficiency of over-estimation ratios of Algorithm C.

6. Conclusions

This article presents explicit expressions and upper bounds for the normwise, mixed,
and componentwise condition numbers of the .# Z-weighted pseudoinverse # 1, ,. In a
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specific situation, the results for the K-weighted pseudoinverse and Moore-Penrose inverse
are also recovered. Additionally, we provide the process of deriving the ./# Z-weighted
least squares solution’s condition numbers from the ./# Z-weighted pseudoinverse condi-
tion numbers and %, ., condition numbers. We proposed three algorithms to efficiently
estimate the normwise, mixed, and componentwise conditions for the ./ Z-weighted
pseudoinverse % !, ., and .4 Z-weighted least squares solutions using the small-sample
statistical condition estimation method. Finally, numerical results confirmed the effi-
cacy and accuracy of the algorithms. In the future, we will continue our study on the
M ZL-weighted pseudoinverse.
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